

Rev.6 EM153S2923F

EPSON RC+ 5.0

SPEL+ Language
Reference

Ver.5.4

EP
SO

N
 R

C
+ 5.0 (V

er.5.4) S
PE

L
+ Language R

eference R
ev.6

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 i

EPSON RC+ 5.0 (Ver.5.4)

SPEL+ Language Reference

Rev.6

Copyright 2011-2015 SEIKO EPSON CORPORATION. All rights reserved.

ii EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

FOREWORD
Thank you for purchasing our robot products.
This manual contains the information necessary for the correct use of the Manipulator.
Please carefully read this manual and other related manuals before installing the robot
system.
Keep this manual handy for easy access at all times.

WARRANTY
The robot and its optional parts are shipped to our customers only after being subjected to
the strictest quality controls, tests, and inspections to certify its compliance with our high
performance standards.

Product malfunctions resulting from normal handling or operation will be repaired free of
charge during the normal warranty period. (Please ask your Regional Sales Office for
warranty period information.)

However, customers will be charged for repairs in the following cases (even if they occur
during the warranty period):

1. Damage or malfunction caused by improper use which is not described in the manual,
or careless use.

2. Malfunctions caused by customers’ unauthorized disassembly.

3. Damage due to improper adjustments or unauthorized repair attempts.

4. Damage caused by natural disasters such as earthquake, flood, etc.

Warnings, Cautions, Usage:

1. If the robot or associated equipment is used outside of the usage conditions and product
specifications described in the manuals, this warranty is void.

2. If you do not follow the WARNINGS and CAUTIONS in this manual, we cannot be
responsible for any malfunction or accident, even if the result is injury or death.

3. We cannot foresee all possible dangers and consequences. Therefore, this manual
cannot warn the user of all possible hazards.

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 iii

TRADEMARKS
Microsoft, Windows, and Windows logo are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Other brand and
product names are trademarks or registered trademarks of the respective holders.

TRADEMARK NOTATION IN THIS MANUAL
Microsoft® Windows® XP Operating system
Microsoft® Windows® Vista Operating system
Microsoft® Windows® 7 Operating system
Throughout this manual, Windows XP, Windows Vista, and Windows 7 refer to above
respective operating systems. In some cases, Windows refers generically to Windows XP,
and Windows Vista, and Windows 7.

NOTICE
No part of this manual may be copied or reproduced without authorization.
The contents of this manual are subject to change without notice.
Please notify us if you should find any errors in this manual or if you have any comments
regarding its contents.

INQUIRIES
Contact the following service center for robot repairs, inspections or adjustments.
If service center information is not indicated below, please contact the supplier
office for your region.

Please prepare the following items before you contact us.

- Your controller model and its serial number
- Your manipulator model and its serial number
- Software and its version in your robot system
- A description of the problem

SERVICE CENTER

iv EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

MANUFACTURER
 Seiko Epson Corporation
 Toyoshina Plant

Robotics Solutions Operations Division
6925 Toyoshina Tazawa,
Azumino-shi, Nagano, 399-8285
Japan

 TEL : +81-(0)263-72-1530
 FAX : +81-(0)263-72-1495

SUPPLIERS
 North & South America Epson America, Inc.
 Factory Automation/Robotics

18300 Central Avenue
Carson, CA 90746
USA

 TEL : +1-562-290-5900
 FAX : +1-562-290-5999
 E-MAIL : info@robots.epson.com

 Europe Epson Deutschland GmbH
 Factory Automation Division

Otto-Hahn-Str.4
D-40670 Meerbusch
Germany

 TEL : +49-(0)-2159-538-1391
 FAX : +49-(0)-2159-538-3170
 E-MAIL : robot.infos@epson.de

 China Epson (China) Co., Ltd.
 Factory Automation Division

7F, Jinbao Building No. 89, Jinbao Street,
Dongcheng District, Beijing,
China, 100005

 TEL : +86-(0)-10-8522-1199
 FAX : +86-(0)-10-8522-1120

 Taiwan Epson Taiwan Technology & Trading Ltd.
 Factory Automation Division

14F, No.7, Song Ren Road, Taipei 110,
Taiwan, ROC

 TEL : +886-(0)-2-8786-6688
 FAX : +886-(0)-2-8786-6677

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 v

 Korea Epson Korea Co., Ltd.
 Marketing Team (Robot Business)

27F DaeSung D-Polis A, 606
Seobusaet-gil, Geumcheon-gu, Seoul, 153-803
Korea

 TEL : +82-(0)-2-3420-6692
 FAX : +82-(0)-2-558-4271

 Southeast Asia Epson Singapore Pte. Ltd.
 Factory Automation System

1 HarbourFront Place, #03-02,
HarbourFront Tower One,
Singapore 098633

 TEL : +65-(0)-6586-5696
 FAX : +65-(0)-6271-3182

 India Epson India Pvt. Ltd.
 Sales & Marketing (Factory Automation)

12th Floor, The Millenia, Tower A, No. 1,
Murphy Road, Ulsoor, Bangalore,
India 560008

 TEL : +91-80-3051-5000
 FAX : +91-80-3051-5005

 Japan Epson Sales Japan Corporation
 Factory Automation Systems Department

Nishi-Shinjuku Mitsui Bldg.6-24-1
Nishishinjuku, Shinjuku-ku, Tokyo 160-8324
Japan

 TEL : +81-(0)3-5321-4161

vi EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SAFETY PRECAUTIONS

Installation of robots and robotic equipment should only be performed by qualified
personnel in accordance with national and local codes. Please carefully read this
manual and other related manuals when using this software.
Keep this manual in a handy location for easy access at all times.

WARNING

 This symbol indicates that a danger of possible serious
injury or death exists if the associated instructions are not
followed properly.

CAUTION

 This symbol indicates that a danger of possible harm to
people or physical damage to equipment and facilities
exists if the associated instructions are not followed
properly.

Table of Contents

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 vii

Summary of SPEL+ Commands 1

System Management Commands ... 1

Robot Control Commands ... 1

Torque Commands .. 5

Input / Output Commands .. 5

Point Management Commands ... 7

Coordinate Change Commands .. 7

Program Control Commands ... 8

Program Execution Commands ... 8

Pseudo Statements .. 9

Numeric Value Commands .. 9

String Commands .. 9

Logical operators .. 10

Variable commands ... 10

Commands used with VB Guide .. 10

SPEL+ Language Reference 11

SPEL+ Error Messages 492

Events .. 492

Warnings .. 494

Controller Main ... 495

Operator Panel ... 501

Teach Pendant ... 501

PC .. 502

Simulator .. 503

Interpreter ... 505

Parser ... 524

Motor Control ... 540

Servo .. 549

Vision Calibration ... 555

Points ... 556

Fieldbus .. 558

Vision .. 559

GUI Builder ... 561

Hardware .. 562

EPSON RC+ .. 566

Table of Contents

viii EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Precaution of EPSON RC+ Ver.4.* Compatibility 567

Overview ... 567

General Differences .. 568

Compatibility List of Commands ... 569

List of New Commands ... 578

Summary of SPEL+ Commands

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 1

Summary of SPEL+ Commands
The following is a summary of SPEL+ commands.

System Management Commands

Reset Resets the controller.

SysConfig Displays controller setup.
SysErr Returns the latest error status or warning status.

Date Sets the system date.
Time Sets system time.
Date$ Returns the system date as a string.
Time$ Returns system time as a string.

Hour Displays / returns controller operation time.

Stat Returns controller status bits.
CtrlInfo Returns controller information.
RobotInfo Returns robot information.
RobotInfo$ Returns robot text information.
TaskInfo Returns task information.
TaskInfo$ Returns task text information.

DispDev Sets the current display device.
EStopOn Return the Emergency Stop status.
CtrlDev Returns the current control device number.
Cls Clears the EPSON RC+ 5.0 Run, Operator, or Command

window text area.
Clears the TP print panel.

Toff Turns off execution line display on the LCD.
Ton Specifies a task which shows a execution line on the LCD.

SafetyOn Return the Safety Door open status.

Robot Control Commands

Power Sets / returns servo power mode.
MHour Function Returns the accumulated MOTOR ON time of the robot

motors.
Motor Sets / returns motor status.
SFree Removes servo power from the specified servo axis.
SLock Restores servo power to the specified servo axis.

Jump Jumps to a point using point to point motion.
Jump3 Jumps to a point using 3D gate motion.
Jump3CP Jumps to a point using 3D motion in continuous path.
Arch Sets / returns arch parameters for Jump motion.
LimZ Sets the upper Z limit for the Jump command.
Sense
JS Returns status of Sense operation.
JT Returns the status of the most recent Jump command for

the current robot.

Summary of SPEL+ Commands

2 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Go Moves the robot to a point using point to point motion.
Pass Executes simultaneous four joint Point to Point motion,

passing near but not through the specified points.
Pulse Moves the robot to a position defined in pulses.
BGo Executes Point to Point relative motion, in the selected

local coordinate system.
BMove Executes linear interpolation relative motion, in the

selected local coordinate system.
TGo Executes Point to Point relative motion, in the current tool

coordinate system.
TMove Executes linear interpolation relative motion, in the

selected tool coordinate system.
Till Specifies motion stop when input occurs.
TillOn Returns the current Till status.
!…! Process statements during motion.

Speed Sets / returns speed for point to point motion commands.
Accel Sets / returns acceleration and deceleration for point to

point motion.

Inertia Specifies or displays the inertia settings of the robot arm.
Weight Specifies or displays the weight settings of the robot arm.

Arc Moves the arm using circular interpolation.
Arc3 Moves the arm in 3D using circular interpolation.

Move Moves the robot using linear interpolation.
Curve Defines the data and points required to move the arm

along a curved path. Many data points
can be defined in the path to improve precision of the path.

CV Move Performs the continuous spline path motion defined by the
Curve instruction.

SpeedS Sets / returns speed for linear motion commands.
AccelS Sets / returns acceleration and deceleration for linear

motion.

SpeedR Sets / returns speed for tool rotation.
AccelR Sets / returns acceleration and deceleration for tool

rotation.
AccelMax Returns maximum acceleration value limit available for

Accel.

Brake Turns brake on or off for specified joint of the current robot.

Home Moves robot to user defined home position.
HomeClr Clears the home position definition.
HomeDef Returns status of home position definition.
HomeSet Sets user defined home position.
Hordr Sets motion order for Home command.

AtHome Returns if the current robot is in its Home position or not.

InPos Checks if robot is in position (not moving).
CurPos Returns current position while moving.

Summary of SPEL+ Commands

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 3

TCPSpeed Returns calculated current tool center point velocity.

Pallet Defines a pallet or returns a pallet point.

Fine Sets positioning error limits.
QP Sets / returns Quick Pause status.
QPDecelR Sets the deceleration speed of quick pause for the change

of tool orientation during the CP motion.
QPDecelS Sets the deceleration speed of quick pause in the CP

motion.

CP Sets CP (Continuous Path) motion mode.

Box Specifies and displays the approach check area.
BoxClr Clears the definition of approach check area.
BoxDef Returns whether Box has been defined or not.

Plane Specifies and displays the approach check plane.
PlaneClr Clears (undefines) a Plane definition.
PlaneDef Returns the setting of the approach check plane.
InsideBox Returns the check status of the approach check area.
InsidePlane Returns the check status of the approach check plane.
Find Specifies or displays the condition to store coordinates

during motion.
FindPos Returns a robot point stored by Fine during a motion

command.
PosFound Returns status of Find operation.

WaitPos Waits for robot to decelerate and stop at position before

executing the next statement
while path motion is active.

RobotModel$ Returns the robot model name.
RobotName$ Returns the robot name.
RobotSerial$ Returns the robot serial number.
RobotType Returns the robot type.
TargetOK Returns a status indicating whether or not the PTP (Point

to Point) motion from the current
position to a target position is possible.

JRange Sets / returns joint limits for one joint.
Range Sets limits for all joints.

XYLim Sets / returns Cartesian limits of robot envelope.
XYLimClr Clears the XYLim definition.
XYLimDef Returns whether XYLim has been defined or not.
XY Returns a point from individual coordinates that can be

used in a point expression.

Dist Returns the distance between two robot points.

PTPBoost Sets / returns boost values for small distance PTP motion.
PTPBoostOK Returns whether or not the PTP (Point to Point) motion

from a current position to a target
position is a small travel distance.

Summary of SPEL+ Commands

4 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

PTPTime Returns the estimated time for a point to point motion
command without executing it.

LJM Function Returns the point data with the orientation flags converted

to enable least joint motion when moving to a specified
point based on the reference point.

AutoLJM Sets the Auto LJM
AutoLJM Function Returns the state of the Auto LJM
AvoidSingularity Sets the Singularity avoiding function
AvoidSingularity Function Returns the state of the Singularity avoiding function
SingularityAngle Sets the singularity neighborhood angle for the singularity

avoiding function
SingularityAngle Function Returns the singularity neighborhood angle for the

singularity avoiding function
SingularitySpeed Sets the singularity neighborhood speed for the singularity

avoiding function
SingularitySpeed Function Returns the singularity neighborhood speed for the

singularity avoiding function
SingularityDist Sets the singularity neighborhood distance necessary for

the singularity avoiding function.
SingularityDist Function Returns the singularity neighborhood distance necessary

for the singularity avoiding function.

Align Function Returns point data converted to align robot orientation with

the nearest coordinate axis in local coordinate system.
AlignECP Function Returns point data converted to align robot orientation with

a nearest coordinate axis in ECP coordinate system.

SoftCP Sets / returns SoftCP motion mode.

CX Sets / returns the X axis coordinate of a point.
CY Sets / returns the Y axis coordinate of a point.
CZ Sets / returns the Z axis coordinate of a point.
CU Sets / returns the U axis coordinate of a point.
CV Sets / returns the V axis coordinate of a point.
CW Sets / returns the W axis coordinate of a point.
Pls Returns the pulse value of one joint.
Agl Returns joint angle at current position.
PAgl Return a joint value from a specified point.

JA Returns a robot point specified in joint angles.
AglToPls Converts robot angles to pulses.
DegToRad Converts degrees to radians.
RadToDeg Converts radians to degrees.

Joint Displays the current position for the robot in joint

coordinates.
JTran Perform a relative move of one joint.
PTran Perform a relative move of one joint in pulses.

RealPls Returns the pulse value of the specified joint.
RealPose Returns the current position of the specified robot.
PPls Return the pulse position of a specified joint value from a

specified point.

Here Teach a robot point at the current position.
Where Displays current robot position data.

Summary of SPEL+ Commands

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 5

Torque Commands

TC Returns the torque control mode setting and current mode.
TCSpeed Specifies the speed limit in the torque control.
TCLim Specifies the torque limit of each joint for the torque control

mode.
RealTorque Returns the current torque instruction value of the

specified joint.

ATCLR Clears and intializes the average torque for one or more

joints.
ATRQ Displays the average torque for the specified joint.
PTCLR Clears and intializes the peak torque for one or more joints.
PTRQ Displays the peak torque for the specified joint.

OLAccel Sets up the automatic adjustment of acceleration/

deceleration that is adjusted
OLRate Display overload rating for one or all joints for the current

robot.

Input / Output Commands

On Turns an output on.
Off Turns an output off.
Oport Reads status of one output bit.
Sw Returns status of input.

In Reads 8 bits of inputs. Used for I/O.
InW Returns the status of the specified input word port. Used

for I/O.
InBCD Reads 8 bits of inputs in BCD format.
InReal Reads an input data of 2 words (32 bits) as a floating-point

data (IEEE754 compliant) of 32 bits.
Out Sets / returns 8 bits of outputs. Used for I/O.
OutW Simultaneously sets 16 output bits. Used for I/O.
OpBCD Simultaneously sets 8 output bits using BCD format.

OutReal Output the output data of real value as the floating-point

data (IEEE754 compliant) of 32 bits to the output port 2
words (32 bits).

MemOn Turns a memory bit on.
MemOff Turns a memory bit off.
MemSw Returns status of memory bit.
MemIn Reads 8 bits of memory I/O.
MemOut Sets / returns 8 memory bits.
MemInW Returns the status of the specified memory I/O word port.

Each word port contains 16 memory I/O bits.
MemOutW Simultaneously sets 16 memory I/O bits.
Wait Wait for condition or time.
TMOut Sets default time out for Wait statement.
Tw Returns the status of the Wait condition and Wait timer

interval.

Input Input one or more variables from current display window.

Summary of SPEL+ Commands

6 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Print Display characters on current display window.
Line Input Input a string from the current display window.

Input # Input one or more variables from a communications port.
Print # Output characters to a communications port.
Line Input # Input a string from a communications port.
Lof Returns the number of lines in a communications buffer.

SetIn For Virtual IO, sets specified input port (8 bits) to the

specified value.
SetInReal Set a hypothetical I/O input port (2 words (32 bits)) as a

floating-point data (IEEE789 compliant) of 32 bits.
SetInW For Virtual IO, sets specified input word (16 bits) to the

specified value.
SetSw For Virtual IO, sets specified input bit to the specified value.

IOLabel$ Returns the I/O label for a specified input or output bit, byte,

or word.
IONumber Returns the I/O number of the specified I/O label.

OpenCom Open an RS-232 communication port.
CloseCom Close the RS-232C port that has been opened with

OpenCom.
SetCom Sets or displays parameters for RS-232C port.
ChkCom Returns number of characters in the reception buffer of a

communication port

OpenNet Open a TCP/IP network port.
CloseNet Close the TCP/IP port previously opened with OpenNet.
SetNet Sets parameters for a TCP/IP port.
ChkNet Returns number of characters in the reception buffer of a

network port
WaitNet Wait for TCP/IP port connection to be established.

Read Reads characters from a file or communications port.
ReadBin Reads binary data from a file or communications port.
Write Writes characters to a file or communication port without

end of line terminator.
WriteBin Writes binary data to a file or communications port.

InputBox Displays a prompt in a dialog box, waits for the operator to

input text or choose a button, and returns the contents of
the box.

MsgBox Displays a message in a dialog box and waits for the
operator to choose a button.

Summary of SPEL+ Commands

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 7

Point Management Commands

ClearPoints Clears all point data in memory.
LoadPoints Loads point data from a file in memory.
SavePoints Saves point data to a file in memory.

P# Defines a specified point.
PDef Returns the definition status of a specified point.
PDel Deletes specified position data.
PLabel Defines a label for a specified point.
PLabel$ Returns the point label associated with a point number.
PNumber Returns the point number associated with a point label.
PList Displays point data in memory for the current robot.
PLocal Sets the local attribute for a point.

Coordinate Change Commands

Arm Sets / returns current arm.
ArmSet Defines an arm.
ArmDef Returns status of arm definition.
ArmClr Clears an arm definition.

Tool Sets / returns the current tool number.
TLSet Defines or displays a tool coordinate system.
TLDef Returns status of tool definition.
TLClr Clears a tool definition.

ECP Sets / returns the current ECP number
ECPSet Defines or displays an external control point.
ECPDef Returns status of ECP definition.
ECPClr Clears an ECP definition.

Base Defines and displays the base coordinate system.

Local Define a local coordinate system.
LocalDef Returns status of local definition.
LocalClr Clears (undefines) a local coordinate system.

Elbow Sets / returns elbow orientation of a point.
Hand Sets / returns hand orientation of a point.
Wrist Sets / returns wrist orientation of a point.
J4Flag Sets / returns the J4Flag setting of a point.
J6Flag Sets / returns the J6Flag orientation of a point.
J1Flag Sets / returns the J1Flag setting of a point.
J2Flag Sets / returns the J2Flag orientation of a point.

VxCalib Creates the calibration data.
VxCalDelete Deletes the calibration data.
VxCalInfo Returns the calibration completion status / calibration data.
VxCalLoad Loads the calibration data from the file.
VxCalSave Saves the calibration data to the file.
VxTrans Converts the pixel coordinates to the robot coordinates

and returns the converted the point data.

Summary of SPEL+ Commands

8 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Program Control Commands

Function Declare a function.
For...Next Executes one or more statements for a specific count.
GoSub Execute a subroutine.
Return Returns from a subroutine.
GoTo Branch unconditionally to a line number or label.
Call Call a user function.
If..Then..Else..EndIf Conditional statement execution
Else Used with the If instruction to allow statements to be

executed when the condition used with the If instruction is
False. Else is an option for the If/Then instruction.

Select ... Send Executes one of several groups of statements, depending on the
value of an expression.

Do...Loop Do...Loop construct.

Trap Specify a trap handler.
OnErr Defines an error handler.
Era Returns robot joint number for last error.
Erf$ Returns the function name for last error.
Erl Returns line number of error.
Err Returns error number.
Ert Returns task number of error.
ErrMsg$ Returns error message.
Signal Sends a signal to tasks executing WaitSig.
SyncLock Synchronizes tasks using a mutual exclusion lock.
SynUnlock Unlocks a sync ID that was previously locked with

SyncLock.
WaitSig Waits for a signal from another task.

ErrorOn Returns the error status of the controller.
Error Generates a user error.
EResume Resumes execution after an error-handling routine is

finished.
PauseOn Returns the pause status.

Exit Exits a loop construct or function.

Program Execution Commands

Xqt Execute a task.
Pause Pause all tasks that have pause enabled.
Cont Resumes the contoller after a Pause statement has been

executed and continues the execution of all tasks.
Halt Suspend a task.
Quit Quits a task.
Resume Resume a task in the halt state.
MyTask Returns current task.

TaskDone Returns the completion status of a task.
TaskState Returns the current state of a task.
TaskWait Waits to for a task to terminate.

Summary of SPEL+ Commands

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 9

Pseudo Statements

#define Defines a macro.
#ifdef ... #endif Conditional compile.
#ifndef ... #endif Conditional compile.
#include Include a file.

Numeric Value Commands

Ctr Return the value of a counter.
CTReset Resets a counter.
ElapsedTime Measures a takt time.
ResetElapsedTime Resets and starts a takt time measurement timer.
Tmr Returns the value of a timer.
TmReset Resets a timer to 0.
Sin Returns the sine of an angle.
Cos Returns cosine of an angle.
Tan Returns the tangent of an angle.
Acos Returns arccosine.
Asin Returns arcsine.
Atan Returns arctangent.
Atan2 Returns arctangent based on X, Y position.
Sqr Returns the square root of a number.
Abs Returns the absolute value of a number.
Sgn Returns the sign of a number.

Int Converts a real number to an integer.

BClr Clear one bit in a number and return the new value
BSet Sets a bit in a number and returns the new value.
BTst Returns the status of 1 bit in a number.
Fix Returns the integer portion of a real number.
Hex Returns a string representing a specified number in

hexadecimal format.
Randomize Initializes the random-number generator.
Redim Redimension an array at run-time.

Rnd Return a random number.
UBound Returns the largest available subscript for the indicated

dimension of an array.

String Commands

Asc Returns the ASCII value of a character.
Chr$ Returns the character of a numeric ASCII value.

Left$ Returns a substring from the left side of a string.
Mid$ Returns a substring.
Right$ Returns a substring from the right side of a string.

Len Returns the length of a string.
LSet$ Returns a string padded with trailing spaces.
RSet$ Returns a string padded with leading spaces.
Space$ Returns a string containing space characters.

Summary of SPEL+ Commands

10 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Str$ Converts a number to a string.
Val Converts a numeric string to a number.

LCase$ Converts a string to lower case.
UCase$ Converts a string to upper case.
LTrim$ Removes spaces from beginning of string.
RTrim$ Removes spaces from end of string.
Trim$ Removes spaces from beginning and end of string.
ParseStr Parse a string and return array of tokens.
FmtStr$ Format a number or string.

InStr Returns position of one string within another.
Tab$ Returns a string containing the specified number of tabs

characters.

Logical operators

And Performs logical and bitwise AND operation.
Or Or operator.
LShift Shifts bits to the left.
Mod Modulus operator.
Not Not operator.
RShift Shifts bits to the right.
Xor Exclusive Or operator.
Mask Performs bitwise AND operation in Wait statements.

Variable commands

Boolean Declares Boolean variables.
Byte Declares byte variables.
Double Declares double variables.
Global Declares global variables.
Integer Declares integer variables.
Long Declares long integer variables.
Real Declares real variables.
String Declares string variables.

Commands used with VB Guide

SPELCom_Event Fire an event in SpelNetLib client.

SPEL+ Language Reference

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 11

SPEL+ Language Reference
This section describes each SPEL+ command as follows:

Syntax

Syntax describes the format used for each command. For some
commands, there is more than one syntax shown, along with a
number that is referenced in the command description. Parameters
are shown in italics.

Parameters

Describes each of the parameters for this command.

Return Values

Describes any values that the command returns.

Description

Gives details about how the command works.

Notes

Gives additional information that may be important about this
command.

See Also

Shows other commands that are related to this command. Refer to
the Table of Contents for the page number of the related commands.

Example

Gives one or more examples of using this command.

SPEL+ Language Reference

12 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SYMBOLS

This manual uses the following symbols to show what context the command can
be used in:

 May be used from the command window.

 May be used as a statement in a SPEL+ program.

 May be used as a Function in a SPEL+ program.

>

S

F

!...! Parallel Processing

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 13

!...! Parallel Processing

Processes input/output statements in parallel with motion.

Syntax
motion cmd !statements !

Parameters
motion cmd Any valid motion command included in the following list: Arc, Arc3, Go, Jump,

Jump3, Jump3CP, Move.
statements Any valid parallel processing I/O statement(s) which can be executed during

motion. (See the table below)
Description

Parallel processing commands are attached to motion commands to allow I/O statements to execute
simultaneously with the beginning of motion travel. This means that I/O can execute while the arm is
moving rather than always waiting for arm travel to stop and then executing I/O. There is even a
facility to define when within the motion that the I/O should begin execution. (See the “Dn” parameter
described in the table below.)

The table below shows all valid parallel processing statements. Each of these statements may be
used as single statements or grouped together to allow multiple I/O statements to execute during one
motion statement.

Dn

Used to specify %travel before the next parallel statement is executed. “n” is
a percentage between 0 and 100 which represents the position within the
motion where the parallel processing statements should begin. Statements
which follow the Dn parameter will begin execution after n% of the motion
travel has been completed.
When used with the Jump, Jump3, and Jump3CP commands, %travel does
not include the depart and approach motion. To execute statements after the
depart motion has completed, include D0 (zero) at the beginning of the
statement.
“Dn” may appear a maximum of 16 times in a parallel processing statement.

On / Off n Turn Output bit number “n” on or off.
MemOn / MemOff n Turns memory I/O bit number “n” on or off.
Out p,d Outputs data “d” to output port “p”.
OpBCD p, d Outputs data “d” to output port “p”.
OutW p, d Outputs data “d” to output port “p”.
OutReal p, d Outputs data “d” to output port “p”.
MemOutW p, d Outputs data “d” to output port “p”.
MemOut p, d Outputs data “d” to memory I/O port “p”.
Signal s Generates synchronizing signal.

Wait t Delays for “t” seconds prior to execution of the next parallel processing
statement.

WaitSig s Waits for signal “s” before processing next statement.

Wait Sw(n) = j Delays execution of next parallel processing statement until the input bit “n” is
equal to the condition defined by “j”. (On or Off)

Wait MemSw(n) = j Delays execution of the next parallel processing statement until the memory
I/O bit “n” is equal to the condition defined by “j”. (On or Off)

Print / Input Prints data to and inputs data from the display device.
Print # / Input # Prints data to and inputs data from the specified communications port.
Pn = Point
expression Updates the specified point data.

> S

!...! Parallel Processing

14 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Notes
When Motion is Completed before All I/O Commands are Complete

If, after completing the motion for a specific motion command, all parallel processing statement
execution has not been completed, subsequent program execution is delayed until all parallel
processing statements execution has been completed. This situation is most likely to occur with short
moves with many I/O commands to execute in parallel.

What happens when the Till statement is used to stop the arm prior to completing the intended
motion

If Till is used to stop the arm at an intermediate travel position, the next statement after the motion
statement's execution is delayed until all the execution of all parallel processing statements has been
completed.

Whem the Trap is used to stop the arm before completing the motion
After the arm stops at an intermediate travel position, D statement cannot be executed.

Specifying “n” near 100% can cause path motion to decelerate
If a large value of “n” is used during CP motion, the robot may decelerate to finish the current motion.
This is because the position specified would normally be during deceleration if CP was not being used.
To avoid deceleration, consider placing the processing statement after the motion command. For
example, in the example below, the On 1 statement is moved from parallel processing during the jump
to P1 to after the jump.

CP On
Jump P1 !D96; On 1!
Go P2

CP On
Jump P1
On 1
Go P2

The Jump statement and Parallel Processing
It should be noted that execution of parallel processing statements which are used with the Jump
statement begins after the rising motion has completed and ends at the start of falling motion.
It should be noted that execution of parallel processing statements which are used with the Jump3
statement begins after the depart motion has completed and ends at the start of approach motion.

The Here statement and Parallel Processing
You cannot use both of the Here statement and parallel processing in one motion command like this:

Go Here :Z(0) ! D10; MemOn 1 !
Be sure to change the program like this:

P999 = Here
Go P999 Here :Z(0) ! D10; MemOn 1 !

See Also

Arc, Arc3, Go, Jump, Jump3, Jump3CP, Move, Pulse

!...! Parallel Processing Example
The following examples show various ways to use the parallel processing feature with Motion
Commands:.

Parallel processing with the Jump command causes output bit 1 to turn on at the end of the Z joint
rising travel and when the 1st, 2nd, and 4th axes begin to move. Then output bit 1 is turned off again
after 50% of the Jump motion travel has completed.

Function test
 Jump P1 !D0; On 1; D50; Off 1!
Fend

Parallel processing with the Move command causes output bit 5 to turn on when the joints have
completed 10% of their move to the point P1. Then 0.5 seconds later turn output bit 5 off.

Function test2
 Move P1 !D10; On 5; Wait 0.5; Off 5!
Fend

#define

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 15

#define

Defines identifier to be replaced by specified replacement string.

Syntax
#define identifier [(parameter, [parameter])] string

Parameters
identifier Keyword defined by user which is an abbreviation for the string parameter. Rules for

identifiers are as follows:
- The first character must be alphabetic while the characters which follow may be

alphanumeric or an underscore (_).
- Spaces or tab characters are not allowed as part of the identifier .

parameter Normally used to specify a variable (or multiple variables) which may be used by the
replacement string. This provides for a dynamic define mechanism which can be used
like a macro. A maximum of up to 8 parameters may be used with the #define command.
However, each parameter must be separated by a comma and the parameter list must be
enclosed within parenthesis.

string This is the replacement string which replaces the identifier when the program is compiled.
Rules regarding replacement strings are as follows:

- Spaces or tabs are allowed in replacement strings.
- Identifiers used with other #define statements cannot be used as replacement strings.
- If the comment symbol (') is included, the characters following the comment symbol

will be treated as a comment and will not be included in the replacement string.
- The replacement string may be omitted. In this case the specified identifier is

replaced by "nothing" or the null string. This actually deletes the identifier from the
program

Description
The #define instruction causes a replacement to occur within a program for the specified identifier.
Each time the specified identifier is found the identifier is replaced with the replacement string prior to
compilation. However, the source code will remain with the identifier rather than the replacement
string. This allows code to become easier to read in many cases by using meaningful identifier names
rather than long difficult to read strings of code.

The defined identifier can be used for conditional compiling by combining with the #ifdef or #ifndef
commands.

If a parameter is specified, the new identifier can be used like a macro.

Notes
Using #define for variable declaration or label substitutions will cause an error:

It should be noted that usage of the #define instruction for variable declaration will cause an error.

See Also

#ifdef
#ifndef

S

#define

16 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

#define Example

' Uncomment next line for Debug mode.
' #define DEBUG

Input #1, A$
#ifdef DEBUG
 Print "A$ = ", A$
#endif
Print "The End"

#define SHOWVAL(x) Print "var = ", x

Integer a

a = 25

SHOWVAL(a)

#ifdef...#else...#endif

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 17

#ifdef...#else...#endif

Provides conditional compiling capabilities.

Syntax
#ifdef identifier
..put selected source code for conditional compile here.
[#else
...put selected source code for false condition here.]
#endif

Parameters
identifier Keyword defined by the user which when defined allows the source code defined

between #ifdef and #else or #endif to be compiled. Thus the identifier acts as the
condition for the conditional compile.

Description
#ifdef...#else...#endif allows for the conditional compiling of selected source code. The condition as to
whether or not the compile will occur is determined based on the identifier. #ifdef first checks if the
specified identifier is currently defined by #define. The #else statement is optional.

If defined, and the #else statement is not used, the statements between #ifdef and #endif are compiled.
Otherwise, if #else is used, then the statements between #ifdef and #else are compiled.

If not defined, and the #else statement is not used, the statements between #ifdef and #endif are
skipped without being compiled. Otherwise, if #else is used, then the statements between #else and
#endif are compiled.

See Also
#define, #ifndef

#ifdef Example
A section of code from a sample program using #ifdef is shown below. In the example below, the
printing of the value of the variable A$ will be executed depending on the presence or absence of the
definition of the #define DEBUG pseudo instruction. If the #define DEBUG pseudo instruction was
used earlier in this source, the Print A$ line will be compiled and later executed when the program is
run. However, the printing of the string "The End" will occur regardless of the #define DEBUG pseudo
instruction.

' Uncomment next line for Debug mode.
' #define DEBUG

Input #1, A$
#ifdef DEBUG
 Print "A$ = ", A$
#endif
Print "The End"

S

#ifndef...#endif

18 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

#ifndef...#endif

Provides conditional compiling capabilities.

Syntax
#ifndef identifier
..Put selected source code for conditional compile here.
[#else
...put selected source code for true condition here.]
#endif

Parameters
identifier Keyword defined by the user which when not defined allows the source code defined

between #ifndef and #else or #endif to be compiled. Thus the identifier acts as the
condition for the conditional compile.

Description

This instruction is called the "if not defined" instruction. #ifndef...#else...#endif allow for the conditional
compiling of selected source code. The #else statement is optional.

If defined, and the #else statement is not used, the statements between #ifndef and #endif are not
compiled. Otherwise, if #else is used, then the statements between #else and #endif are compiled.

If not defined, and the #else statement is not used, the statements between #ifndef and #endif are
compiled. Otherwise, if #else is used, then the statements between #else and #endif are not compiled.

Notes
Difference between #ifdef and #ifndef

The fundamental difference between #ifdef and #ifndef is that the #ifdef instruction compiles the
specified source code if the identifier is defined. The #ifndef instruction compiles the specified source
code if the identifier is not defined.

See Also

#define, #ifdef

#ifndef Example
A section of code from a sample program using #ifndef is shown below. In the example below, the
printing of the value of the variable A$ will be executed depending on the presence or absence of the
definition of the #define NODELAY pseudo instruction. If the #define NODELAY pseudo instruction
was used earlier in this source, the Wait 1 line will Not be compiled along with the rest of the source
for this program when it is compiled. (i.e. submitted for running.) If the #define NODELAY pseudo
instruction was not used (i.e. NODELAY is not defined) earlier in this source, the Wait 1 line will be
compiled and later executed when the program is run. The printing of the string "The End" will occur
regardless of the #define NODELAY pseudo instruction.

' Comment out next line to force delays.
#define NODELAY 1

Input #1, A$
#ifndef NODELAY
 Wait 1
#endif
Print "The End"

S

#include

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 19

#include

Includes the specified file into the file where the #include statement is used.

Syntax
#include "fileName.INC"

Parameters
fileName fileName must be the name of an include file in the current project. All include files have

the “.inc” extension. The filename specifies the file which will be included in the current
file.

Description

#include inserts the contents of the specified include file with the current file where the #include
statement is used.

Include files are used to contain #define statements.

The #include statement must be used outside of any function definitions.

An include file may contain a secondary include file. For example, FILE2 may be included within FILE1,
and FILE3 may be included within FILE2. This is called nesting.

See Also
#define, #ifdef, #ifndef

#include Example
Include File (Defs.inc)

#define DEBUG 1
#define MAX_PART_COUNT 20

Program File (main.prg)

#include "defs.inc"

Function main
 Integer i

 Integer Parts(MAX_PART_COUNT)

Fend

S

#undef

20 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

#undef

Undefines an identifier previously defined with #define.

Syntax
#undef identifier

Parameters
identifier Keyword used in a previous #define statement.

See Also
#define, #ifdef, #ifndef

S

Abs Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 21

Abs Function

Returns the absolute value of a number.

Syntax
Abs(number)

Parameters
number Any valid numeric expression.

Return Values
The absolute value of a number.

Description
The absolute value of a number is its unsigned magnitude. For example, Abs(-1) and Abs(1) both
return 1.

See Also
Atan, Atan2, Cos, Int, Mod, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Abs Function Example
The following examples are done from the command window using the Print instruction.

> print abs(1)
1
> print abs(-1)
1
> print abs(-3.54)
3.54
>

F

Accel Statement

22 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Accel Statement

Sets (or displays) the acceleration and deceleration rates for the point to point
motion instructions Go, Jump and Pulse.

Syntax
(1) Accel accel, decel [, departAccel, departDecel, approAccel, approDecel]
(2) Accel

Parameters
accel Integer expression 1 or more representing a percentage of maximum acceleration rate.
decel Integer expression 1 or more representing a percentage of the maximum deceleration

rate.
departAccel Depart acceleration for Jump. Valid Entries are 1 or more.

Optional. Available only with Jump command.
departDecel Depart deceleration for Jump. Valid Entries are 1 or more.

Optional. Available only with Jump command.
approAccel Approach acceleration for Jump. Valid Entries are 1 or more.

Optional. Available only with Jump command.
approDecel Approach deceleration for Jump. Valid Entries are 1 or more.

Optional. Available only with Jump command.

Return Values
When parameters are omitted, the current Accel parameters are displayed.

Description
 Accel specifies the acceleration and deceleration for all Point to Point type motions. This includes

motion caused by the Go, Jump and Pulse robot motion instructions.

Each acceleration and deceleration parameter defined by the Accel instruction may be an integer
value 1 or more. This number represents a percentage of the maximum acceleration (or
deceleration) allowed. Usually, the maximum value is 100. However, some robots allow setting
larger than 100. Use AccelMax function to get the maximum value available for Accel.

The Accel instruction can be used to set new acceleration and deceleration values or simply to
print the current values. When the Accel instruction is used to set new accel and decel values, the
first 2 parameters (accel and decel) in the Accel instruction are required.

The optional departAccel, departDecel, approAccel, and approDecel parameters are effective for
the Jump instruction only and specify acceleration and deceleration values for the depart motion at
the beginning of Jump and the approach motion at the end of Jump.

The Accel value initializes to the default values (low acceleration) when any one of the following
conditions occurs:

Controller Power On
Motor On
SFree, SLock
Reset
Stop button or Ctrl + C Key

>

S

Accel Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 23

Notes
Executing the Accel command in Low Power Mode (Power Low)

If Accel is executed when the robot is in low power mode (Power Low), the new values are stored, but
the current values are limited to low values.

The current acceleration values are in effect when Power is set to High, and Teach mode is OFF.

Accel vs. AccelS
It is important to note that the Accel instruction does not set the acceleration and deceleration rates
for straight line and arc motion. The AccelS instruction is used to set the acceleration and deceleration
rates for the straight line and arc type moves.

Accel setting larger than 100
Usually, the maximum value is 100. However, some robots allow setting larger than 100.
In general use, Accel setting 100 is the optimum setting that maintains the balance of acceleration and
vibration when positioning. However, you may require an operation with high acceleration to shorten
the cycle time by decreasing the vibration at positioning. In this case, set the Accel to larger than 100.
Except in some operation conditions, the cycle time may not change by setting Accel to larger than
100.

See Also

AccelR, AccelS, Go, Jump, Jump3, Power, Pulse, Speed, TGo

Accel Statement Example
The following example shows a simple motion program where the acceleration (Accel) and speed
(Speed) is set using predefined variables.

Function acctest
 Integer slow, accslow, decslow, fast, accfast, decfast

 slow = 20 'set slow speed variable
 fast = 100 'set high speed variable
 accslow = 20 'set slow acceleration variable
 decslow = 20 'set slow deceleration variable
 accfast = 100 'set fast acceleration variable
 decfast = 100 'set fast deceleration variable

 Accel accslow, decslow
 Speed slow
 Jump pick
 On gripper
 Accel accfast, decfast
 Speed fast
 Jump place
 .
 .
 .
Fend

Accel Statement

24 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

<Example 2>
Assume the robot is currently in Low Power Mode (Power Low) and from the command window the
user tries to set the Accel value to 100. Because the robot is in Low Power Mode, a maximum
acceleration value of 10 will be set automatically. (The system will not allow an acceleration larger
than 10 when in Low Power Mode.)

>Accel 100,100
>
>Accel
Low Power Mode
 100 100
 100 100
 100 100

<Example 3>
Set the Z joint downward deceleration to be slow to allow a gentle placement of the part when using
the Jump instruction. This means we must set the Zdnd parameter low when setting the Accel values.

>Accel 100,100,100,100,100,35

>Accel
 100 100
 100 100
 100 35
>

Accel Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 25

Accel Function

Returns specified acceleration value.

Syntax
Accel(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:
 1: acceleration specification value
 2: deceleration specification value
 3: depart acceleration specification value for Jump
 4: depart deceleration specification value for Jump
 5: approach acceleration specification value for Jump
 6: approach deceleration specification value for Jump

Return Values
Integer 1% or more

See Also
Accel Statement

Accel Function Example
This example uses the Accel function in a program:

Integer currAccel, currDecel

' Get current accel and decel
currAccel = Accel(1)
currDecel = Accel(2)
Accel 50, 50
Jump pick
' Restore previous settings
Accel currAccel, currDecel

> F

AccelMax Function

26 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

AccelMax Function

Returns maximum acceleration value limit available for Accel.

Syntax
AccelMax(maxValueNumber)

Parameters
maxValueNumber Integer expression which can have the following values:
 1: acceleration maximum value
 2: deceleration maximum value
 3: depart acceleration maximum value for Jump
 4: depart deceleration maximum value for Jump
 5: approach acceleration maximum value for Jump
 6: approach deceleration maximum value for Jump

Return Values
Integer 1% or more

See Also
Accel

AccelMax Function Example
This example uses the AccelMax function in a program:

' Get maximum accel and decel
Print AccelMax(1), AccelMax(2)

> F

AccelR Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 27

AccelR Statement

Sets or displays the acceleration and deceleration values for tool rotation control of
CP motion.

Syntax
(1) AccelR accel [, decal]
(2) AccelR

Parameters
accel Real expression in degrees / second2 (0.1 to 5000).
decel Real expression in degrees / second2 (0.1 to 5000).

Return Values
When parameters are omitted, the current AccelR settings are displayed.

Description
AccelR is effective when the ROT modifier is used in the Move, Arc, Arc3, BMove, TMove, and
Jump3CP motion commands.

The AccelR value initializes to the default values when any one of the following conditions occurs:

Controller Power On
Motor On
SFree, SLock
Reset
Stop button or Ctrl + C Key

See Also

Arc, Arc3, BMove, Jump3CP, Power, SpeedR, TMove

AccelR Statement Example

AccelR 360, 200

> S

AccelR Function

28 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

AccelR Function

Returns specified tool rotation acceleration value.

Syntax
AccelR(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:
 1: acceleration specification value
 2: deceleration specification value

Return Values
Real value in degrees / second2

See Also

AccelR Statement

AccelR Function Example

Real currAccelR, currDecelR

' Get current accel and decel
currAccelR = AccelR(1)
currDecelR = AccelR(2)

> F

AccelS Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 29

AccelS Statement

Sets the acceleration and deceleration rates for the Straight Line and Continuous Path
robot motion instructions such as Move, Arc, Arc3, Jump3, etc.

Syntax
(1) AccelS accel, [decel] [, departAccel, departDecel, approAccel, approDece]
(2) AccelS

Parameters
accel Real expression represented in mm/sec2 units to define acceleration and

deceleration values for straight line and continuous path motion. If decel is omitted,
then accel is used to specify both the acceleration and deceleration rates.

decel Optional. Real expression represented in mm/sec2 units to define the deceleration
value.

departAccel Optional. Real expression for depart acceleration value for Jump3, Jump3CP.
departDecel Optional. Real expression for depart deceleration value for Jump3, Jump3CP.
approAccel Optional. Real expression for approach acceleration value for Jump3, Jump3CP.
approDecel Optional. Real expression for approach deceleration value for Jump3, Jump3CP.
Valid entries range of the parameters differs by robot type as follows.

accel / decel departAccel / departDecel

approAccel / approDecel

SCARA robot 0.1 to 25000 0.1 to 25000
6-axis robot 0.1 to 25000 0.1 to 50000

 (mm/sec2)
Return Values

Displays Accel and Decel values when used without parameters

Description
AccelS specifies the acceleration and deceleration for all interpolated type motions including linear
and curved interpolations. This includes motion caused by the Move and Arc motion instructions.

The AccelS value initializes to the default values when any one of the following conditions occurs:

Controller Power On
Motor On
SFree, SLock
Reset
Stop button or Ctrl + C Key

Notes
Executing the AccelS command in Low Power Mode (Power Low):

If AccelS is executed when the robot is in low power mode (Power Low), the new values are stored,
but the current values are limited to low values.

The current acceleration values are in effect when Power is set to High, and Teach mode is OFF.

Accel vs. AccelS:
It is important to note that the AccelS instruction does not set the acceleration and deceleration rates
for point to point type motion. (i.e. motions initiated by the Go, Jump, and Pulse instructions.) The
Accel instruction is used to set the acceleration and deceleration rates for Point to Point type motion.

> S

AccelS Statement

30 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

See Also
Accel, Arc, Arc3, Jump3, Jump3CP, Power, Move, TMove, SpeedS

AccelS Statement Example
The following example shows a simple motion program where the straight line/continuous path
acceleration (AccelS) and straight line/continuous path speed (SpeedS) are set using predefined
variables.

Function acctest
 Integer slow, accslow, fast, accfast

 slow = 20 'set slow speed variable
 fast = 100 'set high speed variable
 accslow = 200 'set slow acceleration variable
 accfast = 5000 'set fast acceleration variable
 AccelS accslow
 SpeedS slow
 Move P1
 On 1
 AccelS accfast
 SpeedS fast
 Jump P2
 .
 .
 .
Fend

<Example 2>
Assume the robot is currently in Low Power Mode (Power Low) and from the command window the
user tries to set the AccelS value to 1000. Because the robot is in Low Power Mode, a maximum
acceleration value of 200 will be set automatically. (The system will not allow an acceleration larger
than 200 when in Low Power Mode.)

>AccelS 1000

>AccelS
Low Power Mode
 1000.000 1000.000
>

AccelS Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 31

AccelS Function

Returns acceleration or deceleration for CP motion commands.

Syntax
AccelS(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:
 1: acceleration value
 2: deceleration value
 3: depart acceleration value for Jump3, Jump3CP
 4: depart deceleration value for Jump3, Jump3CP
 5: approach acceleration value for Jump3, Jump3CP
 6: approach deceleration value for Jump3, Jump3CP

Return Values
Real value from 0 to 5000 mm/sec/sec

See Also
AccelS Statement, Arc3, SpeedS, Jump3, Jump3CP

AccelS Function Example

Real savAccelS

savAccelS = AccelS(1)

> F

Acos Function

32 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Acos Function

Returns the arccosine of a numeric expression.

Syntax
Acos(number)

Parameters
number Numeric expression representing the cosine of an angle.

Return Values
Real value, in radians, representing the arccosine of the parameter number.

Description
Acos returns the arccosine of the numeric expression. Values range is from -1 to 1. The value
returned by Acos will range from 0 to PI radians. If number is < -1 or > 1, an error occurs.

To convert from radians to degrees, use the RadToDeg function.

See Also
Abs, Asin, Atan, Atan2, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Acos Function Example

Function acostest
 Double x

 x = Cos(DegToRad(30))
 Print "Acos of ", x, " is ", Acos(x)
Fend

F

Agl Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 33

Agl Function

Returns the joint angle for the selected rotational joint, or position for the selected linear joint.

Syntax
Agl(jointNumber)

Parameters
jointNumber Integer expression representing the joint number. Values are from 1 to the

number of joints on the robot.

Return Values
The joint angle for selected rotational joint or position for selected linear joints.

Description
The Agl function is used to get the joint angle for the selected rotational joint or position for the
selected linear joint.

If the selected joint is rotational, Agl returns the current angle, as measured from the selected joint's 0
position, in degrees. The returned value is a real number.

If the selected joint is a linear joint, Agl returns the current position, as measured from the selected
joint's 0 position, in mm. The returned value is a real number.

If an auxiliary arm is selected with the Arm statement, Agl returns the angle (or position) from the
standard arm's 0 pulse position to the selected arm.

See Also
PAgl, Pls, PPls

Agl Function Example
The following examples are done from the command window using the Print instruction.

> print agl(1), agl(2)
 17.234 85.355

F

AglToPls Function

34 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

AglToPls Function

Converts robot angles to pulses.

Syntax
AglToPls(j1, j2, j3, j4, [j5], [j6])

Parameters
j1 - j6 Real expressions representing joint angles.

Return Values
A robot point whose location is determined by joint angles converted to pulses.

Description
Use AglToPls to create a point from joint angles.

Note
Assignment to point can cause part of the joint position to be lost.

In certain cases, when the result of AglToPls is assigned to a point data variable, the arm moves to a
joint position that is different from the joint position specified by AglToPls.

For example:

P1 = AglToPls(0, 0, 0, 90, 0, 0)
Go P1 ' moves to AglToPls(0, 0, 0, 0, 0, 90) joint position

Similarly, when the AglToPls function is used as a parameter in a CP motion command, the arm may
move to a different joint position from the joint position specified by AglToPls.

Move AglToPls(0, 0, 0, 90, 0, 0) ' moves to AglToPls(0, 0, 0, 0, 0, 90)
joint position

When using the AglToPls function as a parameter in a PTP motion command, this problem does not
occur.

See Also

Agl, JA, Pls

AglToPls Function Example

Go AglToPls(0, 0, 0, 90, 0, 0)

F

Align Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 35

Align Function

Returns the point data converted to align the robot orientation (U, V, W) at the specified point
in the tool coordinate system with the nearest axis of the specified local coordinate system.

Syntax
(1) Align (Point, [localNumber])

Parameters
Point The point data.
localNumber The local coordinate system number to be a reference for the alignment of

orientation.
If omitted, the base coordinate system is used.

Description

While operating the 6-axis robot, the robot orientation may have to be aligned with an axis of the
specified local coordinate system without changing the tool coordinate system position (origin) defined
with the point data.
Align Function converts the orientation data (U,V,W) of the specified point data and aligns with the
nearest axis of the specified local coordinate system.

For robots except the 6-axis robot, it returns a specified point.

See Also
AlignECP Function, LJM Function

Align Function Example

Move Align(P0) ROT

P1 = Align(P0, 1)
Move P1 ROT

F

AlignECP Function

36 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

AlignECP Function

Returns the point data converted to align the robot orientation (U, V, W) at the specified point
in the tool coordinate system with the nearest axis of the specified ECP coordinate system.

Syntax
AlignECP (Point, ECPNumber)

Parameters
Point The point data.
ECPNumber The ECP coordinate system number to be a reference for the alignment of

orientation.

Description
While operating the 6-axis robot, the robot orientation may have to be aligned with an axis of the
specified local coordinate system without changing the tool coordinate system position (origin) defined
with the point data.
AlignECP Function converts the orientation data (U,V,W) of the specified point data and aligns with
the nearest axis of the specified local coordinate system.

For robots except the 6-axis robot, it returns a specified point.

See Also
Align Function, LJM Function

AlignECP Function Example

Move AlignECP(P0) ROT

P1 = AlignECP(P0, 1)
Move P1 ROT

F

And Operator

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 37

And Operator

Operator used to perform a logical or bitwise And of 2 expressions.

Syntax
result = expr1 And expr2

Parameters
expr1, expr2 For logical And, any valid expression which returns a Boolean result. For bitwise And,

an integer expression.
result For logical And, result is a Boolean value. For bitwise And, result is an integer.

Description
A logical And is used to combine the results of 2 or more expressions into 1 single Boolean result.
The following table indicates the possible combinations.

expr1 expr2 result
True True True
True False False
False True False
False False False

A bitwise And performs a bitwise comparison of identically positioned bits in two numeric expressions
and sets the corresponding bit in result according to the following table:

If bit in expr1 is And bit in expr2 is The result is
0 0 0
0 1 0
1 0 0
1 1 1

See Also

LShift, Mask, Not, Or, RShift, Xor

And Operator Example

Function LogicalAnd(x As Integer, y As Integer)

 If x = 1 And y = 2 Then
 Print "The values are correct"
 EndIf
Fend

Function BitWiseAnd()

 If (Stat(0) And &H800000) = &H800000 Then
 Print "The enable switch is open"
 EndIf
Fend

>print 15 and 7
7
>

javascript:hhobj_7.Click()
javascript:hhobj_8.Click()

Arc, Arc3 Statements

38 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Arc, Arc3 Statements

Arc moves the arm to the specified point using circular interpolation in the XY plane.
Arc3 moves the arm to the specified point using circular interpolation in 3 dimensions.
These two commands are available for SCARA robots (including RS series) and 6-axis robots.

Syntax
(1) Arc midPoint, endPoint [ROT] [CP] [searchExpr] [!...!]
(2) Arc3 midPoint, endPoint [ROT] [ECP] [CP] [searchExpr] [!...!]

Parameters
midPoint Point expression. The middle point (taught previously by the user) which the arm travels

through on its way from the current point to endPoint.
endPoint Point expression. The end point (taught previously by the user) which the arm travels to

during the arc type motion. This is the final position at the end of the circular move.
ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool rotation.
ECP Optional. External control point motion. This parameter is valid when the ECP option is

enabled.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Parallel processing statements may be used with the Arc statement. These are optional.
(Please see the Parallel Processing description for more information.)

Description

Arc and Arc3 are used to move the arm in a circular type motion from the current position to endPoint
by way of midPoint. The system automatically calculates a curve based on the 3 points (current
position, endPoint, and midPoint) and then moves along that curve until the point defined by endPoint
is reached. The coordinates of midPoint and endPoint must be taught previously before executing the
instruction. The coordinates cannot be specified in the statement itself.

Arc and Arc3 use the SpeedS speed value and AccelS acceleration and deceleration values. Refer to
Using Arc3 with CP below on the relation between the speed/acceleration and the
acceleration/deceleration. If, however, the ROT modifier parameter is used, Arc and Arc3 use the
SpeedR speed value and AccelR acceleration and deceleration values. In this case SpeedS speed
value and AccelS acceleration and deceleration value have no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur.
However, by using the ROT parameter and giving priority to the acceleration and the deceleration of
the tool rotation, it is possible to move without an error. When there is not an orientational change with
the ROT modifier parameter and movement distance is not “0”, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed
exceeds the specified speed of the manipulator, an error will occur. In this case, please reduce the
speed or append the ROT modifier parameter to give priority to the rotational
speed/acceleration/deceleration.

When ECP is used (Arc3 only), the trajectory of the external control point coresponding to the ECP
number specified by ECP instruction moves circular with respect to the tool coordinate system. In this
case, the trajectory of tool center point does not follow a circular line.

> S

Arc, Arc3 Statements

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 39

ECP

Work

TCP

Setting Speed and Acceleration for Arc Motion
SpeedS and AccelS are used to set speed and acceleration for the Arc and Arc3 instructions.
SpeedS and AccelS allow the user to specify a velocity in mm/sec and acceleration in mm/sec2.

Notes
Arc Instruction works in Horizontal Plane Only

The Arc path is a true arc in the Horizontal plane. The path is interpolated using the values for
endPoint as its basis for Z and U. Use Arc3 for 3 dimensional arcs.

Range Verification for Arc Instruction
The Arc and Arc3 statements cannot compute a range verification of the trajectory prior to the arc
motion. Therefore, even for target positions that are within an allowable range, en route the robot may
attempt to traverse a path which has an invalid range, stopping with a severe shock which may
damage the arm. To prevent this from occurring, be sure to perform range verifications by running the
program at low speeds prior to running at faster speeds.

Suggested Motion to Setup for the Arc Move
Because the arc motion begins from the current position, it may be necessary to use the Go, Jump or
other related motion command to bring the robot to the desired position prior to executing Arc or Arc3.

Using Arc, Arc3 with CP
The CP parameter causes the arm to move to the end point without decelerating or stopping at the
point defined by endPoint. This is done to allow the user to string a series of motion instructions
together to cause the arm to move along a continuous path while maintaining a specified speed
throughout all the motion. The Arc and Arc3 instructions without CP always cause the arm to
decelerate to a stop prior to reaching the end point.

Arc, Arc3 Statements

40 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Potential Errors
Changing Hand Attributes

Pay close attention to the HAND attributes of the points used with the Arc instruction. If the hand
orientation changes (from Right Handed to Left Handed or vice-versa) during the circular interpolation
move, an error will occur. This means the arm attribute (/L Lefty, or /R Righty) values must be the
same for the current position, midPoint and endPoint points.

Attempt to Move Arm Outside Work Envelope
If the specified circular motion attempts to move the arm outside the work envelope of the arm, an
error will occur.

See Also

!Parallel Processing!, AccelS, Move, SpeedS

Arc, Arc3 Statements Example

The diagram below shows arc motion which originated at the point P100 and then moves through
P101 and ends up at P102. The following function would generate such an arc:

Function ArcTest
 Go P100
 Arc P101, P102
Fend

P101

P100

P102

Tip

When first trying to use the Arc instruction, it is suggested to try a simple arc with points directly in
front of the robot in about the middle of the work envelope. Try to visualize the arc that would be
generated and make sure that you are not teaching points in such a way that the robot arm would try
to move outside the normal work envelope.

Arch Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 41

Arch Statement

Defines or displays the Arch parameters for use with the Jump, Jump3, Jump3CP
instructions.

Syntax
(1) Arch archNumber, departDist, approDist
(2) Arch archNumber
(3) Arch

Parameters
archNumber Integer expression representing the Arch number to define. Valid Arch numbers are from

0 to 6 making a total of 7 entries into the Arch table. (see default Arch Table below)
departDist The vertical distance moved (Z) at the beginning of the Jump move before beginning

horizontal motion. (specified in millimeters)
For Jump3 and Jump3CP, it specifies the depart distance before a span motion. (specified in
millimeters)

approDist The vertical distance required (as measured from the Z position of the point the arm is
moving to) to move in a completely vertical fashion with all horizontal movement
complete. (specified in millimeters)
For Jump3 and Jump3CP, it specifies the approach distance before a span motion. (specified in
millimeters)

Return Values

Displays Arch Table when used without parameters.
The Arch table of the specified Arch number will be displayed when only the Arch number is
specified.

Description
The primary purpose of the Arch instruction is to define values in the Arch Table which is required for
use with the Jump motion instruction. The Arch motion is carried out per the parameters
corresponding to the arch number selected in the Jump C modifier. (To completely understand the
Arch instruction, the user must first understand the Jump instruction.)

The Arch definitions allow the user to "round corners" in the Z direction when using the Jump C
instruction. While the Jump instruction specifies the point to move to (including the final Z joint
position), the Arch table entries specify how much distance to move up before beginning horizontal
motion (riseDist) and how much distance up from the final Z joint position to complete all horizontal
motion (fallDist). (See the diagram below)

Depart
Distance

Approach
Distance

> S

Arch Statement

42 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

There are a total of 8 entries in the Arch Definition Table with 7 of them (0-6) being user definable.
The 8th entry (Arch 7)is the default Arch which actually specifies no arch at all which is referred to as
Gate Motion. (See Gate Motion diagram below) The Jump instruction used with the default Arch entry
(Entry 8) causes the arm to do the following:

1) Begin the move with only Z-joint motion until it reaches the Z-Coordinate value specified by the
LimZ command. (The upper Z value)

2) Next move horizontally to the target point position until the final X, Y and U positions are
reached.

3) The Jump instruction is then completed by moving the arm down with only Z-joint motion until
the target Z-joint position is reached.

 Gate Motion

(Jump with Arch 7)

P0 P1

Arch Table Default Values:

Arch
Number

Depart
Distance

Approach
Distance

0 30 30
1 40 40
2 50 50
3 60 60
4 70 70
5 80 80
6 90 90

Notes
Jump Motion trajectory changes depending on motion and speed

Jump motion trajectory is comprised of vertical motion and horizontal motion. It is not a continuous
path trajectory. The actual Jump trajectory of arch motion is not determined by Arch parameters alone.
It also depends on motion and speed.

Always use care when optimizing Jump trajectory in your applications. Execute Jump with the desired
motion and speed to verify the actual trajectory.

When speed is lower, the trajectory will be lower. If Jump is executed with high speed to verify an
arch motion trajectory, the end effector may crash into an obstacle with lower speed.

In a Jump trajectory, the depart distance increases and the approach distance decreases when the
motion speed is set high. When the fall distance of the trajectory is shorter than the expected, lower
the speed and/or the deceleration, or change the fall distance to be larger.

Even if Jump commands with the same distance and speed are executed, the trajectory is affected by
motion of the robot arms. As a general example, for a SCARA robot the vertical upward distance
increases and the vertical downward distance decreases when the movement of the first arm is large.
When the vertical fall distance decreases and the trajectory is shorter than the expected, lower the
speed and/or the deceleration, or change the fall distance to be larger.

Arch Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 43

Another Cause of Gate Motion
When the specified value of the Rising Distance or Falling Distance is larger than the actual Z-joint
distance which the robot must move to reach the target position, Gate Motion will occur. (i.e. no type
Arch motion will occur.)

Arch values are Maintained
The Arch Table values are permanently saved and are not changed until either the user changes
them.

See Also

Jump, Jump3, JumpCP

Arch Statement Example
The following are examples of Arch settings done from the command window.

> arch 0, 15, 15
> arch 1, 25, 50
> jump p1 c1
> arch
 arch0 = 15.000 15.000
 arch1 = 25.000 50.000
 arch2 = 50.000 50.000
 arch3 = 60.000 60.000
 arch4 = 70.000 70.000
 arch5 = 80.000 80.000
 arch6 = 90.000 90.000
>

Arch Function

44 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Arch Function

Returns arch settings.

Syntax
Arch(archNumber, paramNumber)

Parameters
archNumber Integer expression representing arch setting to retrieve parameter from (0 to 6).
paramNumber 1: depart distance
 2: approach distance

Return Value
Real number containing distance.

See Also
Arch statement

Arch Function Example

Real archValues(6, 1)
Integer i

' Save current arch values
For i = 0 to 6
 archValues(i, 0) = Arch(i, 1)
 archValues(i, 1) = Arch(i, 2)
Next i

> F

Arm Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 45

Arm Statement

Selects or displays the arm number to use.

Syntax
(1) Arm armNumber
(2) Arm

Parameters
armNumber Optional integer expression. Valid range is from 0 to 15. The user may select up

to 16 different arms. Arm 0 is the standard (default) robot arm. Arm 1 to 15 are
auxiliary arms defined by using the ArmSet instruction. When omitted, the
current arm number is displayed.

Return Values
When the Arm instruction is executed without parameters, the system displays the current arm
number.

Description
Allows the user to specify which arm to use for robot instructions. Arm allows each auxiliary arm to
use common position data. If no auxiliary arms are installed, the standard arm (arm number 0)
operates. Since at time of delivery the arm number is specified as “0”, it is not necessary to use the
Arm instruction to select an arm. However, if auxiliary arms are used they must first defined with the
ArmSet instruction.

The auxiliary arm configuration capability is provided to allow users to configure the proper robot
parameters for their robots when the actual robot configuration is a little different than the standard
robot. For example, if the user mounted a 2nd orientation joint to the 2nd robot link, the user will
probably want to define the proper robot linkages for the new auxiliary arm which is formed. This will
allow the auxiliary arm to function properly under the following conditions:

- Specifying that a single data point be moved through by 2 or more arms.
- Using Pallet
- Using Continuous Path motion
- Using relative position specifications
- Using Local coordinates

For SCARA robots (including RS series) with rotating joints used with a Cartesian coordinate system,
joint angle calculations are based on the parameters defined by the ArmSet parameters. Therefore,
this command is critical if any auxiliary arm or hand definition is required.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Notes
Arm 0

Arm 0 cannot be defined or changed by the user through the ArmSet instruction. It is reserved since it
is used to define the standard robot configuration. When the user sets Arm to “0” this means to use
the standard robot arm parameters.

Arm Number Not Defined
Selecting auxiliary arm numbers that have not been defined by the ArmSet command will result in an
error.

> S

Arm Statement

46 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

See Also
ArmClr, ArmSet, ECPSet, TLSet

Arm Statement Example

The following examples are potential auxiliary arm definitions using the ArmSet and Arm instructions.
ArmSet defines the auxiliary arm and Arm defines which Arm to use as the current arm. (Arm 0 is the
default robot arm and cannot be adjusted by the user.)

From the command window:

> ArmSet 1, 300, -12, -30, 300, 0
> ArmSet
 arm0 250 0 0 300 0
 arm1 300 -12 -30 300 0

> Arm 0
> Jump P1 'Jump to P1 using the Standard Arm Config
> Arm 1
> Jump P1 'Jump to P1 using auxiliary arm 1

Arm Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 47

Arm Function

Returns the current arm number for the current robot.

Syntax
Arm

Return Values
Integer containing the current arm number.

See Also
Arm Statement

Arm Function Example

Print "The current arm number is: ", Arm

> F

ArmClr Statement

48 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

ArmClr Statement

Clears (undefines) an arm definition.

Syntax
ArmClr armNumber

Parameters
armNumber Integer expression representing which of 15 arms to clear (undefine). (Arm 0 is

the default arm and cannot be cleared.)
Description

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
Arm, ArmSet, ECPSet, Local, LocalClr, Tool, TLSet

ArmClr Statement Example

ArmClr 1

> S

ArmDef Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 49

ArmDef Function

Returns arm definition status.

Syntax
ArmDef (armNumber)

Parameters
armNumber Integer expression representing which arm to return status for.

Return Values
True if the specified arm has been defined, otherwise False.

See Also
Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLClr, TLSet

ArmDef Function Example

Function DisplayArmDef(armNum As Integer)

 Integer i

 If ArmDef(armNum) = False Then
 Print "Arm ", ArmNum, "is not defined"
 Else
 Print "Arm ", armNum, " Definition:"
 For i = 1 to 5
 Print ArmSet(armNum, i)
 Next i
 EndIf
Fend

> F

ArmSet Statement

50 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

ArmSet Statement

Specifies and displays auxiliary arms.

Syntax
(1) ArmSet armNumber , link2Dist, joint2Offset, zOffset, [link1Dist], [orientAngOffset]
(2) ArmSet armNumber
(3) ArmSet

Parameters
armNumber Integer expression: Valid range from 1 to 15. The user may define up to 15

different auxiliary arms.
SCARA Robots (including RS series)
paramNumber Description
1 Horizontal distance from joint #2 to orientation center (mm)
2 Joint #2 angle offset (degree)
3 Height offset (mm)
4 Horizontal distance from joint #1 to joint #2 (mm)
5 Orientation joint angle offset in degrees.

Return Values
When the ArmSet instruction is initiated without parameters, the system displays all the auxiliary arm
numbers and parameters.
The specified arm numbers and parameters will be displayed when only the arm number is specified.

Description
Allows the user to specify auxiliary arm parameters to be used in addition to the standard arm
configuration. This is most useful when an auxiliary arm or hand is installed to the robot. When using
an auxiliary arm, the arm is selected by the Arm instruction.

The link1Dist and orientAngOffset parameters are optional. If they are omitted, the default values are
the standard arm values.

The auxiliary arm configuration capability is provided to allow users to configure the proper robot
parameters for their robots when the actual robot configuration is a little different than the standard
robot. For example, if the user mounted a 2nd orientation joint to the 2nd robot link, the user will
probably want to define the proper robot linkages for the new auxiliary arm which is formed. This will
allow the auxiliary arm to function properly under the following conditions:

- Specifying that a single data point be moved through by 2 or more arms.
- Using Pallet
- Using Continuous Path motion
- Using relative position specifications
- Using Local coordinates

For SCARA robots (including RS series) with rotating joints used with a Cartesian coordinate system,
joint angle calculations are based on the parameters defined by the ArmSet parameters. Therefore,
this command is critical if any auxiliary arm or hand definition is required.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

> S

ArmSet Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 51

Notes
Arm 0

Arm 0 cannot be defined or changed by the user. It is reserved since it is used to define the standard
robot configuration. When the user sets Arm to 0 this means to use the standard robot arm
parameters.

Auxiliary Arm

X Axis

Y Axis

Auxiliary Arm

Auxiliary
Arm

Joint #2

Joint #2

Joint #1

Joint #1

SCARA Robot Cartesian Robot

RS Series:
View from this
direction

SCARA Robots (RS Series)

See Also

Arm, ArmClr

ArmSet Statement Example
The following examples are potential auxiliary arm definitions using the ArmSet and Arm instructions.
ArmSet defines the auxiliary arm and Arm defines which Arm to use as the current arm. (Arm 0 is the
default robot arm and cannot be adjusted by the user.)

From the command window:

> ArmSet 1, 300, -12, -30, 300, 0
> ArmSet
 Arm 0: 125.000, 0.000, 0.000, 225.000, 0.000
 Arm 1: 300.000, -12.000, -30.000, 300.000, 0.000

> Arm 0
> Jump P1 'Jump to P1 using the Standard Arm Config
> Arm 1
> Jump P1 'Jump to P1 using auxiliary arm 1

ArmSet Function

52 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

ArmSet Function

Returns one ArmSet parameter.

Syntax
ArmSet(armNumber, paramNumber)

Parameters
armNumber Integer expression representing the arm number to retrieve values for.
paramNumber Integer expression representing the parameter to retrieve (0 to 5), as described

below.
SCARA Robots (including RS series)

paramNumber Value Returned
1 Horizontal distance from joint #2 to orientation center (mm)
2 Joint #2 angle offset (degree)
3 Height offset (mm)
4 Horizontal distance from joint #1 to joint #2 (mm)
5 Orientation joint angle offset in degrees.

Return Values
Real number containing the value of the specified parameter, as described above.

Auxiliary Arm

X Axis

Y Axis

Auxiliary Arm

Auxiliary
Arm

Joint #2

Joint #2

Joint #1

Joint #1

SCARA Robot Cartesian Robot

RS Series:
View from this
direction

SCARA Robots (RS Series)

See Also

ArmClr, ArmSet Statement

ArmSet Function Example

Real x

x = ArmSet(1, 1)

> F

Asc Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 53

Asc Function

Returns the ASCII value of the first character in a character string.

Syntax
Asc(string)

Parameters
string Any valid string expression of at least 1 character in length.

Return Values
Returns an integer representing the ASCII value of the 1st character in the string sent to the ASC
function.

Description
The Asc function is used to convert a character to its ASCII numeric representation. The character
string send to the ASC function may be a constant or a variable.

Notes
Only the First Character ASCII Value is Returned

Although the Asc instruction allows character strings larger than 1 character in length, only the 1st
character is actually used by the Asc instruction. Asc returns the ASCII value of the 1st character only.

See Also

Chr$, InStr, Left$, Len, Mid$, Right$, Space$, Str$, Val

Asc Function Example
This example uses the Asc instruction in a program and from the command window as follows:

Function asctest
 Integer a, b, c
 a = Asc("a")
 b = Asc("b")
 c = Asc("c")
 Print "The ASCII value of a is ", a
 Print "The ASCII value of b is ", b
 Print "The ASCII value of c is ", c
Fend

From the command window:

>print asc("a")
97
>print asc("b")
98
>

F

Asin Function

54 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Asin Function

Returns the arcsine of a numeric expression.

Syntax
Asin(number)

Parameters
number Numeric expression representing the sine of an angle.

Return Values
Real value, in radians, representing the arc sine of the parameter number.

Description
Asin returns the arcsine of the numeric expression. Values range is from -1 to 1. The value returned
by Asin will range from -PI / 2 to PI / 2 radians. If number is < -1 or > 1, an error occurs.

To convert from radians to degrees, use the RadToDeg function.

See Also
Abs, Acos, Atan, Atan2, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Asin Function Example

Function asintest
 Double x

 x = Sin(DegToRad(45))
 Print "Asin of ", x, " is ", Asin(x)
Fend

F

Atan Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 55

Atan Function

Returns the arctangent of a numeric expression.

Syntax
Atan(number)

Parameters
number Numeric expression representing the tangent of an angular value.

Return Values
Real value, in radians, representing the arctangent of the parameter number.

Description
Atan returns the arctangent of the numeric expression. The numeric expression (number) may be any
numeric value. The value returned by Atan will range from -PI to PI radans.

To convert from radians to degrees, use the RadToDeg function.

See Also
Abs, Acos, Asin, Atan2, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Atan Function Example

Function atantest
 Real x, y
 x = 0
 y = 1
 Print "Atan of ", x, " is ", Atan(x)
 Print "Atan of ", y, " is ", Atan(y)
Fend

F

Atan2 Function

56 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Atan2 Function

Returns the angle of the imaginary line connecting points (0,0) and (X, Y) in radians.

Syntax
Atan2(X, Y)

Parameters
X Numeric expression representing the X coordinate.
Y Numeric expression representing the Y coordinate.

Return Values
Numeric value in radians (-PI to +PI).

Description
Atan2(X, Y) returns the angle of the line which connects points (0, 0) and (X, Y). This trigonometric
function returns an arctangent angle in all four quadrants.

See Also
Abs, Acos, Asin, Atan, Cos, DegToRad, RadToDeg, Sgn, Sin, Tan, Val

Atan2 Function Example

Function at2test
 Real x, y
 Print "Please enter a number for the X Coordinate:"
 Input x
 Print "Please enter a number for the Y Coordinate:"
 Input y
 Print "Atan2 of ", x, ", ", y, " is ", Atan2(x, y)
Fend

F

ATCLR Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 57

ATCLR Statement

Clears and intializes the average torque for one or more joints.

Syntax
ATCLR [j1], [j2], [j3], [j4], [j5], [j6]

Parameters
j1 - j6 Optional. Integer expression representing the joint number. If no parameters are

supplied, then the average torque values are cleared for all joints.

Description
ATCLR clears the average torque values for the specified joints.

You must execute ATCLR before executing ATRQ.

See Also
ATRQ, PTRQ

ATCLR Statement Example

> atclr
> go p1
> atrq 1
 0.028
> atrq
 0.028 0.008
 0.029 0.009
 0.000 0.000
>

> S

AtHome Function

58 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

AtHome Function

Returns if the current robot is in its Home position or not.

Syntax
AtHome

Return Values
True if the current robot is in its Home position, otherwise False.

Description
The AtHome function returns if the current robot is in its Home position or not. To register the Home
position, use HomeSet command or Robot Manager. To move to the Home position, use the Home
command.

See Also
Home, HomeClr, HomeDef, HomeSet, Hordr

F

ATRQ Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 59

ATRQ Statement

Displays the average torque for the specified joint.

Syntax
ATRQ [jointNumber]

Parameters
jointNumber Optional. Integer expression representing the joint number.

Return Values
Displays current average torque values for all joints.

Description
ATRQ displays the average RMS (root-mean-square) torque of the specified joint. The loading state
of the motor can be obtained by this instruction. The result is a real value from 0 to 1 with 1 being
maximum average torque.

You must execute ATCLR before this command is executed.

This instruction is time restricted. You must execute ATRQ within 60 seconds after ATCLR is
executed. When this time is exceeded, error 4030 occurs.

See Also
ATCLR, ATRQ Function, PTRQ

ATRQ Statement Example

> atclr
> go p1
> atrq 1
 0.028
> atrq
 0.028 0.008
 0.029 0.009
 0.000 0.000
>

> S

ATRQ Function

60 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

ATRQ Function

Returns the average torque for the specified joint.

Syntax
ATRQ (jointNumber)

Parameters
jointNumber Integer expression representing the joint number.

Return Values
Real value from 0 to 1.

Description
The ATRQ function returns the average RMS (root-mean-square) torque of the specified joint. The
loading state of the motor can be obtained by this instruction. The result is a real value from 0 to 1
with 1 being maximum average torque.

You must execute ATCLR before this function is executed.

This instruction is time restricted. You must execute ATRQ within 60 seconds after ATCLR is
executed. When this time is exceeded, error 4030 occurs.

See Also
ATRQ Statement, PTCLR, PTRQ

ATRQ Function Example
This example uses the ATRQ function in a program:

Function CheckAvgTorque
 Integer i

 Go P1
 ATCLR
 Go P2
 Print "Average torques:"
 For i = 1 To 4
 Print "Joint ", i, " = ", ATRQ(i)
 Next i
Fend

F

AutoLJM Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 61

AutoLJM Statement

Sets the Auto LJM function.

Syntax
AutoLJM { On | Off }

Parameter
On | Off On: Enables the Auto LJM.

Off: Disables the Auto LJM.
Description

AutoLJM is avairable for following commands.
Arc, Arc3, Go, Jump3, Jump3CP, Move

When AutoLJM is On, the manipulator operates with a least joint motion, just like using the LJM
function, whether the LJM function is applied to the position data to be passed to each command or
not. For example, to get the same effect as Go LJM(P1), you can write a program as follows.

AutoLJM On
Go P1

 AutoLJM Off
Since AutoLJM can enable LJM within a particular section of a program, it is not necessary to edit
each motion command.

When AutoLJM is Off, the LJM function is only enabled when it is applied to the position data to be
passed to each motion command.

In any of the following cases, AutoLJM has the setting specified in the controller settings (factory
default: Off).

Controller startup
Reset
All task stop
Motor On
Switching the Auto / Programming operation mode

Notes
Double application of AutoLJM and LJM function

If LJM function is applied to the point data to be passed to the motion command while AutoLJM is On,
LJM will be doubly applied at the command execution.
For Move LJM(P1, Here) and Move LJM(P1), enabling AutoLJM will not affect the motion. However, if
AutoLJM is enabled for Move LJM(P1, P0), motion completion positions of Move LJM(LJM(P1, P0),
Here), which enabled AutoLJM, and the one of Move LJM(P1, P0), which did not enable AutoLJM,
may be different.
It is recommended to write a program not to duplicate AutoLJM and LJM functions.

AutoLJM Usage Precaution
You can set the AutoLJM function to be enabled at the controller startup by setting the controller
preferences. However, if Auto LJM is enabled at all times by controller preferences or commands, this
function automatically adjusts the posture of the manipulator to reduce the motion distance, even
when you intended to move the joint widely. Therefore, it is recommended to create a program to
apply the LJM function only when necessary by using LJM function or AutoLJM command.

S

AutoLJM Statement

62 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

See Also
AuoLJM Function, LJM Function

AutoLJM Statement Example

AutoLJM On
Go P1
Go P2
AutoLJM Off

AutoLJM Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 63

AutoLJM Function

Returns the state of the AutoLJM.

Syntax
AutoLJM

Return Values
0 = Auto LJM OFF
1 = Auto LJM ON

See Also
AutoLJM

AutoLJM Function Example

If AutoLJM = Off Then
 Print "AutoLJM is off"
EndIf

F

AvoidSingularity Statement

64 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

AvoidSingularity Statement

Sets the singularity avoiding function.

Syntax
AvoidSingularity { 1 | 0 }

Parameter
1 | 0 1: Enables the singularity avoiding function.

0: Disables the singularity avoiding function.
Description

AvoidSingularity is avairable for following commands.
Move, Arc, Arc3, Jump3, Jump3CP

A singurality avoiding function is to prevent accceleration errors when the vertical 6-axis robot
approaches to the singularity in CP motion by passing a different trajectory and returning to the
original trajectory after passing the singularity. This function is only applicable for the wrist singularity.
Since the singularity avoiding function is usually set to “1: Enabled” at the controller startup, it is not
necessary to change the setting. If you do not want a singurarity avoidance to ensure compatibility
with software which does not support the singularity avoiding function, or to avoid a trajectory gap,
disable the function.

If the AvoidSingularity parameter is changed, this function remains enabled until the next controller
startup.
At the controller startup, AvoidSingularity has the setting specified in the controller setting (factory
default: 1). Also, parameters for SingularityAngle, SingularitySpeed, and SingularityDist are reset to
the default values when AvoidSingularity setting is changed.

Notes
Condition setting of singularity neighborhood

To determine whether the manipulator approaches to the singularity neighborhood, angle of Joint #5
and angular velocity of Joint #4 are used. By default, Joint #5 angle is set to ±10 degree, and Joint #4
angle is set to ±10% with respect to the maximum joint velocity. To change these settings, use
SingularityAngle and SingularitySpeed commands.

See Also

AvoidSingularity Function, SingualrityAngle, SingularitySpeed, SingularityDist

AvoidSingularity Statement Example

AvoidSingularity 0 ‘Disables the singularity avoidance and operate the manipulator
Move P1
Move P2
AvoidSingularity 1

S

AvoidSingularity Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 65

AvoidSingularity Function

Returns the state of AvoidSingularity.

Syntax
AvoidSingularity

Return values
0 = Singularity avoiding function disabled
1 = Singularity avoiding function enabled

See also
AvoidSingularity

AvoidSingularity Function Example

If AvoidSingularity = Off Then
 Print "AvoidSingularity is off"
EndIf

F

Base Statement

66 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Base Statement

Defines and displays the base coordinate system.

Syntax
(1) Base pCoordinateData
(2) Base pOrigin, pXaxis, pYaxis, [{ X | Y }]

Parameters
pCoordinateData Point data representing the coordinate data of the origin and direction.
pOrigin Integer expression representing the origin point using robot coordinate system.
pXaxis Integer expression representing a point along the X axis using robot coordinate

system if X alignment is specified.
pYaxis Integer expression representing a point along the Y axis using robot coordinate

system if Y alignment is specified.
X | Y Optional. If X alignment is specified, then pXaxis is on the X axis of the new

coordinate system and only the Z coordinate of pYaxis is used. If Y alignment is
specified, then pYaxis is on the Y axis of the new coordinate system and only the
Z coordinate of pXaxis is used. If omitted, X alignment is assumed.

Description

Defines the robot base coordinate system by specifying base coordinate system origin and rotation
angle in relation to the robot absolute coordinate system.

To reset the Base coordinate system to default, execute the following statement. This will make the
base coordinate system the same as the robot absolute coordinate system.

Base XY(0, 0, 0, 0)

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Notes
Changing the base coordinate system affects all local definitions

When base coordinates are changed, all local coordinate systems must be re-defined.

See Also

Local

Base Statement Example
Define base coordinate system origin at 100 mm on X axis and 100 mm on Y axis

> Base XY(100, 100, 0, 0)

> S

BClr Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 67

BClr Function

Clear one bit in a number and return the new value

Syntax
BClr (number, bitNum)

Parameters
number Specifies the numeric value to clear the bit by an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 31) to be cleared by an expression or numeric value.

Return Values
Returns the new value of the specified numeric value (integer).

See Also
BSet, BTst

BClr Function Example

flags = BClr(flags, 1)

F

BGo Statement

68 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

BGo Statement

Executes Point to Point relative motion, in the selected local coordinate system.

Syntax
BGo destination [CP] [searchExpr] [!...!]

Parameters
destination The target destination of the motion using a point expression.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and
other commands during motion.

Description

Executes point to point relative motion, in the selected local coordinate system that is specified in the
destination point expression.

If a local coordinate system is not specified, relative motion will occur in local 0 (base coordinate
system).

Arm orientation attributes specified in the destination point expression are ignored. The manipulator
keeps the current arm orientation attributes. However, for a 6-Axis manipulator, the arm orientation
attributes are automatically changed in such a way that joint travel distance is as small as possible.

The Till modifier is used to complete BGo by decelerating and stopping the robot at an intermediate
travel position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during
motion.

When parallel processing is used, other processing can be executed in parallel with the motion
command.

The CP parameter causes acceleration of the next motion command to start when the deceleration
starts for the current motion command. In this case the robot will not stop at the destination
coordinate and will continue to move to the next point.

See Also
Accel, BMove, Find, !....! Parallel Processing, Point Assignment, Speed, Till, TGo, TMove, Tool

> S

BGo Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 69

BGo Statement Example

> BGo XY(100, 0, 0, 0) 'Move 100mm in X direction
 '(in the local coordinate system)

Function BGoTest

 Speed 50
 Accel 50, 50
 Power High

 P1 = XY(300, 300, -20, 0)
 P2 = XY(300, 300, -20, 0) /L
 Local 1, XY(0, 0, 0, 45)

 GoP1
 Print Here
 BGo XY(0, 50, 0, 0)
 Print Here

 Go P2
 Print Here
 BGo XY(0, 50, 0, 0)
 Print Here

 BGo XY(0, 50, 0, 0) /1
 Print Here

Fend

[Output]
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 264.645 Y: 385.355 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0

BMove Statement

70 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

BMove Statement

Executes linear interpolation relative motion, in the selected local coordinate system

Syntax
BMove destination [ROT] [CP] [searchExpr] [!...!]

Parameters
destination The target destination of the motion using a point expression.
ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool

rotation.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and
other commands during motion.

Description

Executes linear interpolated relative motion, in the selected local coordinate system that is specified in
the destination point expression.

If a local coordinate system is not specified, relative motion will occur in local 0 (base coordinate
system).

Arm orientation attributes specified in the destination point expression are ignored. The manipulator
keeps the current arm orientation attributes. However, for a 6-Axis manipulator, the arm orientation
attributes are automatically changed in such a way that joint travel distance is as small as possible.

BMove uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to
Using BMove with CP below on the relation between the speed/acceleration and the
acceleration/deceleration. If, however, the ROT modifier parameter is used, BMove uses the SpeedR
speed value and AccelR acceleration and deceleration values. In this case SpeedS speed value and
AccelS acceleration and deceleration value have no effect.

Usually, when the move distance is “0” and only the tool orientation is changed, an error will occur.
However, by using the ROT parameter and giving priority to the acceleration and the deceleration of
the tool rotation, it is possible to move without an error. When there is not an orientational change with
the ROT modifier parameter and movement distance is not “0”, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed
exceeds the specified speed of the manipulator, an error will occur. In this case, please reduce the
speed or append the ROT modifier parameter to give priority to the rotational
speed/acceleration/deceleration.

The Till modifier is used to complete BMove by decelerating and stopping the robot at an intermediate
travel position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during
motion.

When Till is used and the Till condition is satisfied, the manipulator halts immediately and the motion
command is finished. If the Till condition is not satisfied, the manipulator moves to the destination
point.

When Find is used and the Find condition is satisfied, the current position is stored. Please refer to
Find for details.

> S

BMove Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 71

When parallel processing is used, other processing can be executed in parallel with the motion
command.

Notes
Using BMove with CP

The CP parameter causes the arm to move to destination without decelerating or stopping at the point
defined by destination. This is done to allow the user to string a series of motion instructions together
to cause the arm to move along a continuous path while maintaining a specified speed throughout all
the motion. The BMove instruction without CP always causes the arm to decelerate to a stop prior to
reaching the point destination.

See Also

AccelS, BGo, Find, !....! Parallel Processing, Point Assignment, SpeedS, TGo, Till, TMove, Tool

BMove Statement Example

> BMove XY(100, 0, 0, 0) 'Move 100mm in the X
 'direction (in the local coordinate system)

Function BMoveTest

 Speed 50
 Accel 50, 50
 SpeedS 100
 AccelS 1000, 1000
 Power High

 P1 = XY(300, 300, -20, 0)
 P2 = XY(300, 300, -20, 0) /L
 Local 1, XY(0, 0, 0, 45)

 Go P1
 Print Here
 BMove XY(0, 50, 0, 0)
 Print Here

 Go P2
 Print Here
 BMove XY(0, 50, 0, 0)
 Print Here

 BMove XY(0, 50, 0, 0) /1
 Print Here

Fend

[Output]
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 300.000 Y: 350.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 264.645 Y: 385.355 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0

Boolean Statement

72 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Boolean Statement

Declares variables of type Boolean. (1 byte whole number).

Syntax
Boolean varName [(subscripts)], [varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type Boolean.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 to the upper

bound value.
 The total available number of array elements for local and global preserve

variables is 1000.
 The total available number of array elements for global and module variables is

10000.
 To calculate the total elements used in an array, use the following formula. (If a

dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)

Description

Boolean is used to declare variables as type Boolean. Variables of type Boolean can contain one of
two values, False and True. Local variables should be declared at the top of a function. Global and
module variables must be declared outside of functions.

See Also
Byte, Double, Global, Integer, Long, Real, String

Boolean Statement Example

Boolean partOK
Boolean A(10) 'Single dimension array of boolean
Boolean B(10, 10) 'Two dimension array of boolean
Boolean C(5, 5, 5) 'Three dimension array of boolean

partOK = CheckPart()
If Not partOK Then
 Print "Part check failed"
EndIf

S

Box Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 73

Box Statement

Specifies and displays the approach check area.

Syntax
(1) Box AreaNum, minX, maxX, mixY, maxY, minZ, maxZ [,Remote output logic]
(2) Box AreaNum
(3) Box

Parameters
AreaNum Integer expression representing the area number from 1 to 15.
minX The minimum X coordinate position which can be set to the approach check area.
maxX The maximum X coordinate position which can be set to the approach check area.
minY The minimum Y coordinate position which can be set to the approach check area.
maxY The maximum Y coordinate position which can be set to the approach check area.
minZ The minimum Z coordinate position which can be set to the approach check area.
maxZ The maximum Z coordinate position which can be set to the approach check area.
Remote output logic On | Off

Set the Remote output logic. To set I/O output to On when the Box approaches,
use On. To set I/O output to Off when the Box approaches, use Off. When the
parameter is omitted, On will be used.

Return Values
When only AreaNum is specified, the area setting of the specified area is displayed. When all the
parameters are omitted, the area settings for all area numbers are displayed.

Description

Box is used to set the approach check area. The approach check area is for checking approaches of
the robot end effector in the approach check area. The position of the end effector is calculated by the
current tool. The approach check area is set on the base coordinate system of the robot and is
between the specified maximum and minimum X, Y, and Z.

When the approach check area is used, the system detects approaches in any motor power status
during the controller is ON.

You can also use InsideBox function to get the result of the approach check. InsideBox can be used
for wait condition of Wait command. You can provide the check result to the I/O by setting the remote
output setting.

Box1

Lower limit of axes X, Y, Z

Upper limit of axes X, Y, Z

Robot

ｙ
ｚ

100

100 200

ｘ

Configure the Box 1 from Robot 1 position

Box 1, 100, 200, 0, 100, 0, 100

Lower limit of axes X, Y, Z is (100,0,0) and upper limit is (200,100,100)

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may

> S

Box Statement

74 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Notes
Turning Off Approach Check Area by coordinate axis

You can turn off the approach check area of each coordinate axis. To turn off only the Z axis, definthe
minZ and maxZ to be 0. For example Box 1, 200, 300, 0, 500, 0, 0.

Default values of Approach Check Area
The default values for the Box statement are "0, 0, 0, 0, 0, 0". (Approach Check Area Checking is
turned off.)

Tool Selection
The approach check is executed for the current tool. When you change the tool, the approach check
may display the tool approach from inside to outside of the area or the other way although the robot is
not operating.

Tip
Set Box statement from Robot Manager

EPSON RC+ has a point and click dialog box for defining the approach check area. The simplest
method to set the Box values is by using the Box page on the Robot Manager .

See Also

BoxClr, BoxDef, InsideBox, Plane

Box Statement Example
These are examples to set the approach check area using Box statement.

> Box 1, -200, 300, 0, 500, -100, 0

> Box
Box 1: -200.000, 300.000, 0.000, 500.000, -100.000, 0.000

Box Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 75

Box Function

Returns the specified approach check area.

Syntax
Box(AreaNum, limit)

Parameters
AreaNum Integer expression representing the area number from 1 to 15.
limit Integer expression that specifies which limit to return.
 1: Lower limit
 2: Upper limit

Return Values
When you select 1 for limit, the point contains the lower limit of the X, Y, Z coordinates.
When you select 2 for limit, the point contains the upper limit of the X, Y, Z coordinates.

See Also
Box, BoxClr, BoxDef, InsideBox

Box Function Example

P1 = Box(1,1)
P2 = Box(1,2)

F

BoxClr Statement

76 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

BoxClr Statement

Clears the definition of approach check area.

Syntax
BoxClr AreaNum

Parameters
AreaNum Integer expression representing the area number from 1 to 15.

Description
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
Box, BoxDef, InsideBox

BoxClr Statement Example
This example uses BoxClr function in a program.

Function ClearBox

 If BoxDef(1) = True Then
 BoxClr 1
 EndIf
Fend

S >

BoxDef Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 77

BoxDef Function

Returns whether Box has been defined or not.

Syntax
BoxDef(AreaNum)

Parameters
AreaNum Integer expression representing the area number from 1 to 15.

Return Values
True if approach check area is defined for the specified area number, otherwise False.

See Also
Box, BoxClr, InsideBox

BoxDef Function Example
This example uses BoxDef function in a program.

Function ClearBox

 If BoxDef(1) = True Then
 BoxClr 1
 EndIf
Fend

F

Brake Statement

78 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Brake Statement

Turns brake on or off for specified joint of the current robot.

Syntax
Brake status, jointNumber

Parameters
status The keyword On is used to turn the brake on. The keyword Off is used to turn the brake

off.
jointNumber The joint number from 1 to 6.

Description
The Brake command is used to turn brakes on or off for one joint. It can only be executed as a
command command. This command is intended for use by maintenance personel only.

WARNING

■ Use extreme caution when turning off a brake. Ensure that the joint is
properly supported, otherwise the joint can fall and cause damage to the
robot and personel.

Note
Before releasing the brake, be ready to use the emergency stop switch

When the controller is in emergency stop status, the motor brakes are locked. Be aware that the robot
arm may fall by its own weight when the brake is turned off with Brake command.

See Also

Motor, Power, Reset, SFree, SLock

Brake Statement Example

> brake on, 1

> brake off, 1

>

Brake Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 79

Brake Function

Returns brake status for specified joint.

Syntax
Brake (jointNumber)

Parameters
jointNumber Integer expression representing the joint number. Value are from 1 to the number of

joints on the robot.

Return Values
0 = Brake off, 1 = Brake on.

See Also
Brake Statement

Brake Function Example

If Brake(1) = Off Then
 Print “Joint 1 brake is off”
EndIf

>

BSet Function

80 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

BSet Function

Sets a bit in a number and returns the new value.

Syntax
BSet (number, bitNum)

Parameters
number Specifies the value to set the bit with an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 31) to be set by an expression or numeric value.

Return Values
Returns the bit set value of the specified numeric value (integer).

See Also
BClr, BTst

BSet Function Example

flags = BSet(flags, 1)

F

BTst Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 81

BTst Function

Returns the status of 1 bit in a number.

Syntax
BTst (number, bitNum)

Parameters
number Specifies the number for the bit test with an expression or numeric value.
bitNum Specifies the bit (integer from 0 to 31) to be tested.

Return Values
Returns the bit test results (integer 1 or 0) of the specified numeric value.

See Also
BClr, Bset

BTst Function Example

If BTst(flags, 1) Then
 Print "Bit 1 is set"
EndIf

F

Byte Statement

82 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Byte Statement

Declares variables of type Byte. (1 byte whole number).

Syntax
Byte varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type Byte.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 to the upper

bound value.
 The total available number of array elements for local and global preserve

variables is 1000.
 The total available number of array elements for global and module variables is

10000.
 To calculate the total elements used in an array, use the following formula. (If a

dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)

Description

Byte is used to declare variables as type Byte. Variables of type Byte can contain whole numbers
ranging in value from -128 to +127. Local variables should be declared at the top of a function.
Global and module variables must be declared outside of functions.

See Also
Boolean, Double, Global, Integer, Long, Real, String

Byte Statement Example
The following example declares a variable of type Byte and then assigns a value to it. A bitwise And is
then done to see if the high bit of the value in the variable test_ok is On (1) or Off (0). The result is
printed to the display screen. (Of course in this example the high bit of the variable test_ok will always
be set since we assigned the variable the value of 15.)

Function Test
 Byte A(10) 'Single dimension array of byte
 Byte B(10, 10) 'Two dimension array of byte
 Byte C(5, 5, 5) 'Three dimension array of byte
 Byte test_ok
 test_ok = 15
 Print "Initial Value of test_ok = ", test_ok
 test_ok = (test_ok And 8)
 If test_ok <> 8 Then
 Print "test_ok high bit is ON"
 Else
 Print "test_ok high bit is OFF"
 EndIf
Fend

S

Call Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 83

Call Statement

Calls a user function.

Syntax
Call funcName [(argList)]

Parameters
funcName The name of a Function which is being called.
argList Optional. List of arguments that were specified in the Function declaration.

Description
The Call instruction causes the transfer of program control to a function (defined in Function...Fend).
This means that the Call instruction causes program execution to leave the current function and
transfer to the function specified by Call. Program execution then continues in that function until an
Exit Function or Fend instruction is reached. Control is then passed back to the original calling
function at the next statement after the Call instruction.

You may omit the Call keyword and argument parentheses. For example, here is a call statement
used with or without the Call keyword:

Call MyFunc(1, 2)
MyFunc 1, 2

To execute a subroutine within a function, use GoSub...Return.

See Also
Function, GoSub

Call Statement Example

<File1: MAIN.PRG>

Function main
 Call InitRobot
Fend

<File2: INIT.PRG>

Function InitRobot

 If Motor = Off Then
 Motor On
 EndIf
 Power High
 Speed 50
 Accel 75, 75
Fend

S

ChkCom Function

84 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

ChkCom Function

Returns number of characters in the reception buffer of a communication port

Syntax
ChkCom (portNumber)

Parameters
portNumber Integer expression for port number to check.

Return Values
Number of characters received (integer).

If the port cannot receive characters, the following negative values are returned to report the current
port status:

-2 Port is used by another task
-3 Port is not open

See Also
CloseCom, OpenCom, Read, Write

ChkCom Function Example

Integer numChars

numChars = ChkCom(1)

F

ChkNet Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 85

ChkNet Function

Returns number of characters in the reception buffer of a network port

Syntax
ChkNet (portNumber)

Parameters
portNumber Integer expression for port number to check.

Return Values
Number of characters received (integer).

If the port cannot receive characters, the following negative values are returned to report the current
port status:

-1 Port is open but communication has not been established
-2 Port is used by another task
-3 Port is not open

See Also
CloseNet, OpenNet, Read, Write

ChkNet Function Example

Integer numChars

numChars = ChkNet(201)

F

Chr$ Function

86 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Chr$ Function

Returns the character specified by a numeric ASCII value.

Syntax
Chr$(number)

Parameters
number An integer expression between 1 and 255.

Return Values
Returns a character that corresponds with the specified ASCII code specified by the value of number.

Description
Chr$ returns a character string (1 character) having the ASCII value of the parameter number. When
the number specified is outside of the range from 1 to 255, an error will occur.

See Also
Asc, Instr, Left$, Len, Mid$, Right$, Space$, Str$, Val

Chr$ Function Example
The following example declares a variable of type String and then assigns the string "ABC" to it. The
Chr$ instruction is used to convert the numeric ASCII values into the characters "A", "B" and "C". The
&H means the number following is represented in hexadecimal form. (&H41 means Hex 41)

Function Test
 String temp$
 temp$ = Chr$(&H41) + Chr$(&H42) + Chr$(&H43)
 Print "The value of temp = ", temp$
Fend

F

ClearPoints Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 87

ClearPoints Statement

Erases the robot position data memory.

Syntax
ClearPoints

Description
ClearPoints initializes the robot position data area. Use this instruction to erase point definitions
which reside in memory before teaching new points.

See Also
Plist, LoadPoints, SavePoints

ClearPoints Statement Example
The example below shows simple examples of using the ClearPoints command (from the command
window). Notice that no teach points are shown when initiating the Plist command once the
ClearPoints command is given.

>P1=100,200,-20,0/R
>P2=0,300,0,20/L
>plist
P1=100,200,-20,0/R
P2=0,300,0,20/L
>clearpoints
>plist
>

S

CloseCom Statement

88 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

CloseCom Statement

Close the RS-232C port previously opened with OpenCom.

Syntax
CloseCom #portNum | All

Parameters
portNum Integer expression for port number to close.

The task will close all the open RS-232C port when All is specified.

See Also
ChkCom, OpenCom

CloseCom Statement Example

CloseCom #1

S

CloseNet Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 89

CloseNet Statement

Close the TCP/IP port previously opened with OpenNet.

Syntax
CloseNet #portNumber

Parameters
portNumber Integer expression for port number to close. Range is from 201 to 208.
 The task will close all the open TCP/IP port when All is specified.

See Also
ChkNet, OpenNet

CloseNet Statement Example

CloseNet #201

S

Cls Statement

90 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Cls Statement

Clears the EPSON RC+ Run, Operator, or Command window text area.

Syntax
(1) Cls #deviceID
(2) Cls

Parameters
deviceID 21 RC+

23 OP
24 TP (TP1 only)
When deviceID is omitted, the display device is cleared.

Description

Cls clears either the current EPSON RC+ Run or Operator window text area, depending on where the
program was started from.

If Cls is executed from a program that was started from the Command window, the command window
text area is cleared.

When deviceID is omitted, the display of the current display device is cleared.

Cls Statement Example
If this example is run from the Run window or Operator window, the text area of the window will be
cleared when Cls executes.

Function main
 Integer i

 Do
 For i = 1 To 10
 Print i
 Next i
 Wait 3
 Cls
 Loop
Fend

S

Cont Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 91

Cont Statement

Resumes the contoller after a Pause statement has been executed and continues the
execution of all tasks.
This command is for the experienced user and you need to understand the command specification
before the use.

Syntax
Cont

Description
This command can be executed only when it is called from the event handler function. It cannot be
executed from the normal command or command line.

The Cont command resumes the controller tasks paused by the Pause statement or safeguard open
and continues all tasks execution. It has the same function as the <Continue> button on the Run
Window, Operator Window, and the Continue Remote input.

CAUTION

 When executing Cont command from a program, you must understand the
command specification and confirm that the system has the proper conditions for
the Cont command. Improper use such as continuous execution of a command
within a loop may deteriorate the system safety.

See Also
Pause

Cont Statement Example

Function frmmain_btnCont_Click(Sender$ As String)
 Cont
Fend

S

Cos Function

92 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Cos Function

Returns the cosine of a numeric expression.

Syntax
Cos(number)

Parameters
number Numeric expression in Radians.

Return Values
Numeric value in radians representing the cosine of the numeric expression number.

Description
Cos returns the cosine of the numeric expression. The numeric expression (number) must be in radian
units. The value returned by the Cos function will range from -1 to 1

To convert from degrees to radians, use the DegToRad function.

See Also
Abs, Atan, Atan2, Int, Mod, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Cos Function Example
The following example shows a simple program which uses Cos.

Function costest
 Real x
 Print "Please enter a value in radians"
 Input x
 Print "COS of ", x, " is ", Cos(x)
Fend

The following examples use Cos from the Command window.

Display the cosine of 0.55:

>print cos(0.55)
 0.852524522059506
>

Display cosine of 30 degrees:

>print cos(DegToRad(30))
 0.866025403784439
>

F

CP Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 93

CP Statement

Sets CP (Continuous Path) motion mode.

Syntax
CP { On | Off }

Parameters
On | Off The keyword On is used to enable path motion. The keyword Off is used to disable CP

mode.
Description

CP (Continuous Path) motion mode can be used for the Arc, Arc3, Go, Jump, Jump3, Jump3CP, and
Move robot motion instructions.

When CP mode is On, each motion command executes the next statement as deceleration starts.
Continuous path motion will continue regardless of whether the CP parameter is specified in each

motion command or not.
When CP is Off, this function is active only when the CP parameter is specified in each motion
command.

Start deceleration

Start acceleration

Path Motion

0 time

sp
ee

d

Normal Motion

0 time

sp
ee

d

When CP is On, path motion will continue without full deceleration between two CP motions (Arc, Arc3,
Jump3, Jump3CP, Move), or two PTP motions (Go, Jump).
In contrast, full deceleration will occur between a CP motion and a PTP motion.

CP will be set to Off in the following cases

Controller startup
Reset
All task stop
Switching the Auto / Programming operation mode
Motor On
SFree, SLock

See Also
CP Function, Arc, Move, Go

CP Statement Example
CP On
Move P1
Move P2
CP Off

S

CP Function

94 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

CP Function

Returns status of path motion.

Syntax
CP

Return Values
0 = Path motion off, 1 = Path motion on.

See Also
CP Statement

CP Function Example

If CP = Off Then
 Print "CP is off"
EndIf

F

Ctr Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 95

Ctr Function

Returns the counter value of the specified Hardware Input counter.

Syntax
Ctr(bitNumber)

Parameters
bitNumber Number of the Hardware Input bit set as a counter. Only 16 counters can be

active at the same time.

Return Values
The current count of the specified Hardware Input Counter. (Integer expression from 0-65535)

Description
Ctr works with the CTReset statement to allow Hardware inputs to be used as counters.

Each time a hardware input specified as a counter is switched from the Off to On state that input
causes the counter to increment by 1.

The Ctr function can be used at any time to get the current counter value for any counter input. Any of
the Hardware Inputs can be used as counters. However, only 16 counters can be active at the same
time.

Counter Pulse Input Timing Chart

4 msec or longer
4 msec or longer

High (ON)

Low (OFF)

See Also
CTReset

Ctr Function Example
The following example shows a sample of code which could be used to get a hardware input counter
value.

CTReset 3 'Reset counter for input 3 to 0
On 0 'Turn an output switch on

Do While Ctr(3) < 5
Loop
Off 0 'When 5 input cycles are counted for Input 3 turn
 'switch off (output 0 off)

F

CTReset Statement

96 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

CTReset Statement

Resets the counter value of the specified input counter and enables the input to be
a counter input.

Syntax
CTReset(bitNumber)

Parameters
bitNumber Number of the input bit set as a counter. This must be an integer expression

representing a valid input bit. Only 16 counters can be active at the same time.

Description
CTReset works with the CTR function to allow inputs to be used as counters. CTReset sets the
specified input bit as a counter and then starts the counter. If the specified input is already used as a
counter, it is reset and started again.

Notes
Turning Off Power and Its Effect on Counters

Turning off main power releases all counters.
Using the Ctr Function

Use the Ctr Function to retrieve current Hardware Input counter values.

See Also

Ctr

CTReset Statement Example
The following example shows a sample of code which could be used to get a hardware input counter
value.

CTReset 3 'Reset Counter 3 to 0
On 0 'Turn an output switch on
Do While Ctr(3) < 5
Loop
Off 0 'When 5 input cycles are counted for Input 3 turn
 'switch off (output 0 off)

> S

CtrlDev Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 97

CtrlDev Function

Returns the current control device number.

Syntax
CtrlDev

Return Values
21 PC
22 Remote I/O
23 OP
26 Remote Ethernet
29 Remote RS232

See Also
CtrlInfo Function

CtrlDev Function Example

Print "The current control device is: ", CtrlDev

F

CtrlInfo Function

98 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

CtrlInfo Function

Returns controller information.

Syntax
CtrlInfo (index)

Parameters
index Integer expression that represents the index of the information to retrieve.

Description
The following table shows the information that is available from the CtrlInfo function:

Index Bit Value Description
0 N/A Obtained for compatibility.

Use index 9 to get the firmware version of the controller.

1

0 &H1 Ready state
1 &H2 Start state
2 &H4 Pause state

3-7 Undefined
8 &H100 Estop state
9 &H200 Safeguard open

10 &H400 Error state
11 &H800 Critical error state
12 &H1000 Warning

13-31 Undefined

2 0 &H1 Enable switch is on
1-31 Undefined

3

0 &H1 Teach mode circuit problem detected
1 &H2 Safeguard circuit problem detected
2 &H4 Estop circuit problem detected

3-31 Undefined

4 N/A 0 - Normal mode
1 - Dry run mode

5 N/A

 Control device:
21 - RC+
22 - Remote
23 - OP

6 N/A Undefined

7 N/A
 Operation mode:

0 - Program mode
1 - Auto mode

8 N/A 1 - Motors off
0 - Hold (motor setting is on, but currently held off)

9 N/A
 Firmware verision of the Controller

Major No.*1000000 + Minor No.*10000 + Rev No.*100 + Build No.
(Example) Version 1.6.2.4 is 1060204

Return Values

Long value of the desired data
See Also

CtrlInfo$, RobotInfo, TaskInfo

CtrlInfo Function Example
Print "The controller version: ", CtrlInfo(0)

F

CurPos Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 99

CurPos Function

Returns the current target position of the specified robot.

Syntax
CurPos

Return Values
A robot point representing the current target position of the specified robot.

See Also
InPos, FindPos, RealPos

CurPos Function Example

Function main

 Xqt showPosition
 Do
 Jump P0
 Jump P1
 Loop
Fend

Function showPosition

 Do
 P99 = CurPos
 Print CX(P99), CY(P99)
 Loop
Fend

F

Curve Statement

100 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Curve Statement

Defines the data and points required to move the arm along a curved path. Many data points
can be defined in the path to improve precision of the path.

Syntax
Curve fileName, closure, mode, numAxes, pointList

Parameters
fileName A string expression for the name of the file in which the point data is stored. The

specified fileName will have the extension .CVT appended to the end so no extension is
to be specified by the user. When the Curve instruction is executed, file will be created.

closure Specifies whether or not the defined Curve is Closed or left Open at the end of the
curved motion. This parameter must be set to one of two possible values, as shown
below.

 C - Closed Curve
 O - Open Curve
 When specifying the open curve, the Curve instruction creates the data to stop the arm

at the last point of the specified point series. When specifying the closed curve, the
Curve instruction creates the data required to continue motion through the final specified
point and then stopping motion after returning the arm to the starting point of the
specified point series for the Curve instruction.

mode Specifies whether or not the arm is automatically interpolated in the tangential direction of
the U-Axis. It can also specify the ECP number in the upper four bits.

Mode Setting Tangential

Correction
ECP

Number Hexadecimal Decimal
&H00 0

No

0
&H10 16 1
&H20 32 2

… … …
&HA0 160 10
&HB0 176 11
&HC0 192 12
&HD0 208 13
&HE0 224 14
&HF0 240 15
&H02 2

Yes

0
&H12 18 1
&H22 34 2

… … …
&HA2 162 10
&HB2 178 11
&HC2 194 12
&HD2 210 13
&HE2 226 14
&HF2 242 15

S

Curve Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 101

When specifying tangential correction, Curve uses only the U-Axis coordinate of the
starting point of the point series. Tangential correction continuously maintains tool
alignment tangent to the curve in the XY plane. It is specified when installing tools such
as cutters that require continuous tangential alignment. When specifying a closed curve
(using the closure parameter) with Automatic Interpolation in the tangential direction of
the U-Axis, the U-Axis rotates 360 degrees from the start point. Therefore, before
executing the CVMove instruction, set the U-Axis movement range using the Range
instruction so the 360 degree rotation of the U-Axis does not cause an error.
When using ECP, specify the ECP number in the upper four bits.

numAxes Integer number 2, 3, 4, or 6 which specifies the number of axes controlled during the
curve motion as follows:

2 - Generate a curve in the XY plane with no Z Axis movement or U Axis rotation.
3 - Generate a curve in the XYZ space with no U axis rotation.
4 - Generate a curve in the XYZ space with U-Axis rotation.
6 - Generate a curve in the XYZ space with U, V, and W axes rotation (6-Axis

robots only).
The axes not selected to be controlled during the Curve motion maintain their previous
encoder pulse positions and do not move during Curve motion.

pointList { point expression | P(start:finish) } [, output command] ...
This parameter is actually a series of Point Numbers and optional output statements
either separated by commas or an ascended range of points separated by a colon.
Normally the series of points are separated by commas as shown below:
 Curve "MyFile", O, 0, 4, P1, P2, P3, P4

 Sometimes the user defines a series of points using an ascending range of points as
shown below:
 Curve "MyFile", O, 0, 4, P(1:4)

 In the case shown above the user defined a curve using points P1, P2, P3, and P4.
output command is optional and is used to control output operation during curve motion.
The command can be On or Off for digital outputs or memory outputs. Entering an output
command following any point number in the point series causes execution of the output
command when the arm reaches the point just before the output command. A maximum
of 16 output commands may be included in one Curve statement. In the example below,
the "On 2" command is executed just as the arm reaches the point P2, then the arm
continues to all points between and including P3 and P10.
 Curve "MyFile", C, 0, 4, P1, P2, ON 2, P(3:10)

Description

Curve creates data that moves the manipulator arm along the curve defined by the point series
pointList and stores the data in a file on the controller. The CVMove instruction uses the data in the file
created by Curve to move the manipulator in a continuous path type fashion.

Curve calculates independent X, Y, Z, U, V, W coordinate values for each point using a cubic spline
function to create the trajectory. Therefore, if points are far apart from each other or the orientation of
the robot is changed suddenly from point to point, the desired trajectory may not to be realized.

It is not necessary to specify speeds or accelerations prior to executing the Curve instruction. Arm
speed and acceleration parameters can be changed anytime prior to executing CVMove by using the
SpeedS or AccelS instructions.

Points defined in a local coordinate system may be used in the series to locate the curve at the
desired position. By defining all of the specified points in the point series for the Curve instruction as
points with local attributes, the points may be changed as points on the local coordinate system by the
Local instruction following the Curve instruction.

Curve Statement

102 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Note
Use tangential correction when possible

It is recommended that you use tangential correction whenever possible, especially when using
CVMove in a continuous loop throught the same points. If you do not use tangential correction, the
robot may not follow the correct path at higher speeds.

Open Curve Min and Max Number of Points Allowed
Open Curves may be specified by using from 3 to 200 points.

Closed Curve Min and Max Number of Points Allowed
Closed Curves may be specified by using from 3 to 50 points.

Potential Errors
Attempt to Move Arm Outside Work Envelope

The Curve instruction cannot check the movement range for the defined curve path. This means that
a user defined path may cause the robot arm to move outside the normal work envelope. In this case
an "out of range" error will occur.

See Also

AccelS Function, Arc, CVMove, ECP, Move, SpeedS

Curve Statement Example
The following example designates the free curve data file name as MYCURVE.CVT, creates a curve
tracing P1-P7, switches ON output port 2 at P2, and decelerates the arm at P7.

Set up curve

> curve "mycurve", O, 0, 4, P1, P2, On 2, P(3:7)

Move the arm to P1 in a straight line

> jump P1

Move the arm according to the curve definition called mycurve

> cvmove "mycurve"

CVMove Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 103

CVMove Statement

Performs the continuous spline path motion defined by the Curve instruction.

Syntax
CVMove fileName [CP] [searchExpr]

Parameters
fileName String expression for the path and name of the file to use for the continuous path motion

data. This file must be previously created by the Curve instruction and stored on a PC
hard disk.

CP Optional. Specifies continuous path motion after the last point.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

Description
CVMove performs the continuous spline path motion defined by the data in the file fileName, which is
located in the controller memory. The file must be previously created with the Curve command.

Multiple files may exist at the same time on the system. If there is no file name extension, then CVT is
assumed.

The user can change the speed and acceleration for the continuous path motion for CVMove by using
the SpeedS and AccelS instructions.

When the Curve instruction has been previously executed using points with Local definitions, you can
change the operating position by using the Local instruction.

When executing CVMove, be careful that the robot doesn’t collide with peripheral equipment. When
you attempt to change the hand orientation of the 6-axis robot between adjacent points suddenly, due
to the nature of cubic spline function, the 6-axis robot may start changing its orientation from the
previous and following points and move in an unexpected trajectory. Verify the trajectory thoroughly
prior to a CVMove execution and be careful that the robot doesn’t collide with peripheral equipment.
Specify points closely each other and at equal interval. Do not change the hand orientation between
adjacent points suddenly.

The CP parameter causes acceleration of the next motion command to start when the deceleration
starts for the current motion command. In this case the robot will not stop at the destination
coordinate and will continue to move to the next point.

See Also
AccelS Function, Arc, Curve, Move, SpeedS, Till, TillOn

CVMove Statement Example
The following example designates the free curve data file name as MYCURVE.CVT, creates a curve
tracing P1-P7, switches ON output port 2 at P2, and decelerates the arm at P7.

Set up curve
> curve "mycurve", O, 0, 4, P1, P2, On 2, P(3:7)

Move the arm to P1 in a straight line
> jump P1

Move the arm according to the curve definition called mycurve
> cvmove "mycurve"

S

CX, CY, CZ, CU, CV, CW Statements

104 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

CX, CY, CZ, CU, CV, CW Statements

Sets the coordinate of a point.

Syntax
CX(point) = value
CY(point) = value
CZ(point) = value
CU(point) = value
CV(point) = value
CW(point) = value

Parameters
point Pnumber or P(expr) or point label.
value Real expression representing the new coordinate value in millimeters.

See Also
CX, CY, CZ, CU, CV, CW Functions

CX, CY, CZ, CU, CV, CW StatementS Example

CX(pick) = 25.34

F

CX, CY, CZ, CU, CV, CW Functions

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 105

CX, CY, CZ, CU, CV, CW Functions

Retrieves a coordinate value from a point

Syntax
CX(point)
CY(point)
CZ(point)
CU(point)
CV(point)
CW(point)

Parameters
point Point expression.

Return Values
Returns the specified coordinate value. The return values for CX, CY, CZ are real numbers in
millimeters. The return values for CU, CV, CW are real numbers in degrees.

Description
Used to retrieve an individual coordinate value from a point.

To obtain the coordinate from the current robot position, use Here for the point parameter.

See Also
Point expression
CX, CY, CZ, CU, CV, CW Statements

CX, CY, CZ, CU, CV, CW Functions Example
The following example extracts the X axis coordinate value from point "pick" and puts the coordinate
value in the variable x.

Function cxtest
 Real x
 x = CX(pick)
 Print "The X Axis Coordinate of point 'pick' is", x
Fend

F

Date Statement

106 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Date Statement

Specifies and displays the current date in the controller.

Syntax
Date yyyy, mm, dd
Date

Parameters
yyyy Integer expression for year.
mm Integer expression for month.
dd Integer expression for day.

Return Values
When the Date command is entered without any parameters, the current date is displayed.

Description
Specifies the current Date for the controller. This date is used for the files inside the controller. All
files residing in the controller are date stamped. Date automatically calculates the day of the week for
the Date display.

See Also
Time, Date$

Date Statement Example
The following examples are done from the command window.

> Date
2006/09/27

> Date 2006,10,1

> Date
2006/10/01

>

Date$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 107

Date$ Function

Returns the system date.

Syntax
Date$

Return Values
A string containing the date in the format yyyy/mm/dd.

Description
Date$ is used to get the controller system date in a program statement. To set the system date, you
must use the Date statement.

See Also
Date, Time, Time$

Date$ Function Example

Print "Today's date: ", Date$

F

DegToRad Function

108 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

DegToRad Function

Converts degrees to radians.

Syntax
DegToRad(degrees)

Parameters
degrees Real expression representing the degrees to convert to radians.

Return Values
A double value containing the number of radians.

See Also
ATan, ATan2, RadToDeg Function

DegToRad Function Example

s = Cos(DegToRad(x))

> F

DispDev Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 109

DispDev Statement

Sets the current display device.

Syntax
DispDev (deviceID)

Parameters
deviceID The device ID for the desired display device.
 21 RC+

23 OP
24 TP (TP1 only)

See Also

DispDev Function

DispDev Statement Example

DispDev 23

S

DispDev Function

110 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

DispDev Function

Returns the current display device.

Syntax
DispDev

Return Values
Integer value containing the deviceID.
21 RC+
23 OP
24 TP (TP1 only)

See Also
DispDev Statement

DispDev Function Example

Print "The current display device is ", DispDev

F

Dist Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 111

Dist Function

Returns the distance between two robot points.

Syntax
Dist (point1, point2)

Parameters
point1, point2 Specifies two robot point expressions.

Return Values
Returns the distance between both points (real value in mm).

See Also
CU, CV, CW, CX, CY, CZ

Dist Function Example

Real distance

distance = Dist(P1, P2)

F

Do...Loop Statement

112 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Do...Loop Statement

Repeats a block of statements while a condition is True or until a condition becomes True.

Syntax

Do [{ While | Until } condition]
[statements]

[Exit Do]
[statements]

Loop

Or, you can use this syntax:

Do

[statements]
[Exit Do]

[statements]
Loop [{ While | Until } condition]

The Do Loop statement syntax has these parts:

Part Description
condition Optional. Numeric expression or string expression that is True or False. If condition is

Null, condition is treated as False.
statements One or more statements that are repeated while, or until, condition is True.

Description

Any number of Exit Do statements may be placed anywhere in the Do...Loop as an alternate way to
exit a Do...Loop. Exit Do is often used after evaluating some condition, for example, If...Then, in
which case the Exit Do statement transfers control to the statement immediately following the Loop.

When used within nested Do...Loop statements, Exit Do transfers control to the loop that is one
nested level above the loop where Exit Do occurs. Nesting of Do…Loop statements is supported
up to 256 levels deep including other statements (If…Then…Else…EndIf, Select…Send).

See Also

For...Next, Select...Send

Do...Loop Statement Example

Do While Not Lof(1)
 Line Input #1, tLine$
 Print tLine$
Loop

S

Double Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 113

Double Statement

Declares variables of type Double. (8 byte double precision number).

Syntax
Double varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type Double.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 to the upper

bound value.
 The total available number of array elements for local and global preserve

variables is 1000.
 The total available number of array elements for global and module variables is

10000.
 To calculate the total elements used in an array, use the following formula. (If a

dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)

Description

Double is used to declare variables as type Double. Local variables should be declared at the top of
a function. Global and module variables must be declared outside of functions.
Valid number of digits for Double is 14.

See Also
Boolean, Byte, Global, Integer, Long, Real, String

Double Statement Example
The following example shows a simple program which declares some variables using Double.

Function doubletest
 Double var1
 Double A(10) 'Single dimension array of double
 Double B(10, 10) 'Two dimension array of double
 Double C(5, 5, 5) 'Three dimension array of double
 Double arrayvar(10)
 Integer i
 Print "Please enter a Number:"
 Input var1
 Print "The variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter a Number:"
 Input arrayvar(i)
 Print "Value Entered was ", arrayvar(i)
 Next i
Fend

S

ECP Statement

114 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

ECP Statement

Selects or displays the current ECP (external control point).

Syntax
(1) ECP ECPNumber
(2) ECP

Parameters
ECPNumber Optional. Integer expression from 0 to 15 representing which of 16 ECP

definitions to use with subsequent motion instructions. ECP 0 makes the ECP
selection invalid.

Return Values

Displays current ECP when used without parameters.

Description
ECP selects the external control point specified by the ECPnumber (ECPNumber).

Note
This command will only work if the External Control Point option is installed.
Power Off and Its Effect on the ECP Selection

Turning main power off clears the ECP selection.

See Also

ECPSet

ECP Statement Example

>ecpset 1, 100, 200, 0, 0
>ecp 1

> S

ECP Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 115

ECP Function

Returns the current ECP (external control point) number.

Syntax
ECP

Return Values
Integer containing the current ECP number.

Note
This command will only work if the External Control Point option is installed.

See Also

ECP Statement

ECP Function Example

Integer savECP

savECP = ECP
ECP 2
Call Dispense
ECP savECP

ECPClr Statement

116 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

ECPClr Statement

Clears (undefines) an external control point.

Syntax
ECPClr ECPNumber

Parameters
ECPNumber Integer expression representing which of the 15 external control points to clear

(undefine). (ECP0 is the default and cannot be cleared.)

Description
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Note
This command will only work if the External Control Point option is installed.

See Also

Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLSet

ECPClr Statement Example

ECPClr 1

> S

ECPDef Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 117

ECPDef Function

Returns ECP definition status.

Syntax
ECPDef (ECPNumber)

Parameters
ECPNumber Integer expression representing which ECP to return status for.

Return Values
True if the specified ECP has been defined, otherwise False.

See Also
Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLClr, TLSet

ECPDef Statement Example

Function DisplayECPDef(ecpNum As Integer)

 If ECPDef(ecpNum) = False Then
 Print "ECP ", ecpNum, "is not defined"
 Else
 Print "ECP ", ecpNum, ": ",
 Print ECPSet(ecpNum)
 EndIf
Fend

> F

ECPSet Statement

118 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

ECPSet Statement

Defines or displays an external control point.

Syntax
(1) ECPSet ECPNum, ECPPoint
(2) ECPSet ECPNum
(3) ECPSet

Parameters
ECPNum Integer number from 1 to 15 representing which of 15 external control points to define.
ECPPoint Pnumber or P(expr) or point label or point expression.

Return Values
When parameters are omitted, displays the current ECPSet definitions.
When only the ECP number is specified, displays the specified ECPSet definitions.

Description
Defines an external control point.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Note
This command will only work if the External Control Point option is installed.

ECPSet Statement Example

ECPSet 1, P1
ECPSet 2, 100, 200, 0, 0

> S

ECPSet Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 119

ECPSet Function

Returns a point containing the external control point definition for the specified ECP.

Syntax
ECPSet(ECPNumber)

Parameters
ECPNumber Integer expression representing the number of the ECP to retrieve.

Return Values
A point containing the ECP definition.

Note
This command will only work if the External Control Point option is installed.

See Also

ECPSet Statement

ECPSet Function Example

P1 = ECPSet(1)

F

ElapsedTime Function

120 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

ElapsedTime Function

Returns the elapsed time since the takt time measurement timer starts in seconds.

Syntax
ElapsedTime

Return Values
An actual value representing an elapsed time of a takt time measurement timer. (Unit: second)
Valid range is from 0 to approx. 1.7E+31. Timer resolution is 0.001 seconds.

Description
Returns an elapsed time since the takt time measurement timer starts. Unlike the Tmr function, the
ElapsedTime function does not count the time while the program is halted.

The takt time measurement timer can be reset by uing ResetElapsedTime statement.

Real overhead

ResetElapsedTime
overHead = ElapsedTime

See Also

ResetElapsedTime, Tmr Function

ElapsedTime Function Example

ResetElapsedTime 'Resets the takt time measurement timer
For i = 1 To 10 'Executes 10 times
 GoSub Cycle
Next
Print ElapsedTime / 10 'Measures a takt time and displays it

F

Elbow Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 121

Elbow Statement

Sets the elbow orientation of a point.

Syntax
(1) Elbow point, [value]
(2) Elbow

Parameters
point Pnumber or P(expr) or point label.
value Integer expression.

1 = Above (/A)
 2 = Below (/B)

Return Values
When both parameters are omitted, the elbow orientation is displayed for the current robot position.
If value is ommited, the elbow orientation for the specified point is displayed.

See Also
Elbow Function, Hand, J4Flag, J6Flag, Wrist

Elbow Statement Example

Elbow P0, Below
Elbow pick, Above
Elbow P(myPoint), myElbow

P1 = 0.000, 490.000, 515.000, 90.000, -40.000, 180.000

Elbow P1, Above
Go P1

> S

Elbow P1, Below
Go P1

Elbow Function

122 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Elbow Function

Returns the elbow orientation of a point.

Syntax
Elbow [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the elbow orientation of the current

robot position is returned.

Return Values
1 Above (/A)
2 Below (/B)

See Also
Elbow Statement, Hand, Wrist, J4Flag, J6Flag

Elbow Function Example

Print Elbow(pick)
Print Elbow(P1)
Print Elbow
Print Elbow(P1 + P2)

F

Era Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 123

Era Function

Returns the joint number for which an error occurred.

Syntax
Era[(taskNum)]

Parameters
taskNum Integer expression representing a task number from 0 to 16.

Task number omission or “0” specifies the current task.

Return Values
The joint number that caused the error in the range from 0 to 6 as described below:

0 - The current error was not caused by a servo axis.
1 - The error was caused by joint number 1
2 - The error was caused by joint number 2
3 - The error was caused by joint number 3
4 - The error was caused by joint number 4
5 - The error was caused by joint number 5
6 - The error was caused by joint number 6

Description
Era is used when an error occurs to determine if the error was caused by one of the robot joints and to
return the number of the joint which caused the error. If the current error was not caused by any joint,
Era returns “0”.

See Also
Erl, Err, ErrMsg$, Ert, OnErr, Trap

Era Function Example

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

F

EResume Statement

124 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

EResume Statement

Resumes execution after an error-handling routine is finished.

Syntax
EResume [{ label | Next }]

Description
EResume
If the error occurred in the same procedure as the error handler, execution resumes with the
statement that caused the error. If the error occurred in a called procedure, execution resumes at the
Call statement in the procedure containing the error handler.

EResume Next
If the error occurred in the same procedure as the error handler, execution resumes with the
statement immediately following the statement that caused the error. If the error occurred in a called
procedure, execution resumes with the statement immediately following the Call statement that last in
the procedure containing the error handler.

EResume { label }
If the error occurred in the same procedure as the error handler, execution resumes at the statement
containing the label.

See Also
OnErr

EResume Statement Example

Function main
 Integer retry

 OnErr GoTo eHandler
 Do
 RunCycle
 Loop
 Exit Function

eHandler:
 Select Err
 Case MyError
 retry = retry + 1
 If retry < 3 Then
 EResume ' try again
 Else
 Print "MyError has occurred ", retry, " times
 EndIf
 Send
Fend

S

Erf$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 125

Erf$ Function

Returns the name of the function in which the error occurred.

Syntax
Erf$[(taskNumber)]

Parameters
taskNumber Integer expression representing a task number from 0 to 16.

Task number omission or “0” specifies the current task.

Return Values
The name of thefunction where the last error occurred.

Description
Erf$ is used with OnErr. Erf$ returns the function name in which the error occurred. Using
Erf$ combined with Err, Ert, Erl and Era the user can determine much more about the error which
occurred.

See Also
Era, Erl, Err, ErrMsg$, Ert, OnErr

Erf$ Function Example
The Following items are returned in the program example below.

In which task the error occurred (Ert function)
In which function the error occurred (Erf$ function)
Where the error occurred (Erl function)
On which joint the error occurred (Era function)

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "Function at which error occurred is ", Erf$(errTask)
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

F

Erl Function

126 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Erl Function

Returns the line number in which the error occurred.

Syntax
Erl[(taskNumber)]

Parameters
taskNumber Integer expression representing a task number from 0 to 16.

Task number omission or “0” specifies the current task.

Return Values
The line number where the last error occurred.

Description
Erl is used with OnErr. Erl returns the line number in which the error occurred. Using Erl combined
with Err, Ert and Era the user can determine much more about the error which occurred.

See Also
Era, Erf$, Err, ErrMsg$, Ert, OnErr

Erl Function Example
The Following items are returned in the program example below.

In which task the error occurred (Ert function)
Where the error occurred (Erl function)
What error occurred (Err function)
On which joint the error occurred (Era function)

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

F

Err Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 127

Err Function

Returns the most recent error status.

Syntax
Err [(taskNumber)]

Parameters
taskNumber Optional. Integer expression representing a task number from 0 to 16.

“0” specifies the current task.

Return Values
Returns a numeric error code in integer form.

Description
Err allows the user to read the current error code. This along with the SPEL+ Error Handling
capabilities allows the user to determine which error occurred and react accordingly. Err is used with
OnErr.
To get the controller error, use SysErr function.

See Also
Era, Erf$, Erl, ErrMsg$, EResume, Ert, OnErr, Return, SysErr

Err Function Example
The following example shows a simple utility program which checks whether points P0-P399 exist. If
the point does not exist, then a message is printed on the screen to let the user know this point does
not exist. The program uses the CX instruction to test each point for whether or not it has been
defined. When a point is not defined control is transferred to the error handler and a message is
printed on the screen to tell the user which point was undefined.

Function errtest
 Integer i, errnum
 Real x

 OnErr GoTo eHandle
 For i = 0 To 399
 x = CX(P(i))
 Next i
 Exit Function
'
'
'***
'* Error Handler *
'***
eHandle:
 errnum = Err
 ' Check if using undefined point
 If errnum = 78 Then
 Print "Point number P", i, " is undefined!"
 Else
 Print "ERROR: Error number ", errnum, " Occurred."
 EndIf
 EResume Next
Fend

F

ErrMsg$ Function

128 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

ErrMsg$ Function

Returns the error message which corresponds to the specified error number.

Syntax
ErrMsg$(errNumber, langID)

Parameters
errNumber Integer expression containing the error number to get the message for.
langID Optional. Integer expression containing the language ID based on the following values.

0 - English
1 - Japanese
2 - German
3 - French
4 - Simplified Chinese
5 - Traditional Chinese
If omitted, English is used.

Return Values

Returns the error message which is described in the Error Codes table.

See Also
Era, Erl, Err, Ert, OnErr, Trap

ErrMsg$ Function Example
The Following items are returned in the program example below.

In which task the error occurred (Ert function)
Where the error occurred (Erl function)
On which joint the error occurred (Era function)

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

F

ErrorOn Funcion

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 129

ErrorOn Funcion

Returns the error status of the controller.

Syntax
ErrorOn

Return Values
True if the controller is in error status, otherwise False.

Description
ErrorOn function is used only for NoEmgAbort task (special task using NoEmgAbort at Xqt).

See Also
ErrorOn, SafetyOn, SysErr, Wait, Xqt

ErrorOn Function Example
The following example shows a program that monitors the controller error and switches the I/O On/Off
according to the error number when error occurs.

Notes
Forced Flag

This program example uses Forced flag for On/Off command.
Be sure that the I/O outputs change during error, or at Emergency Stop or Safety Door Open when
designing the system.

After Error Occurence
As this program, finish the task promptly after completing the error handling.

Function main

Xqt ErrorMonitor, NoEmgAbort
:
:

Fend

Function ErrorMonitor
 Wait ErrorOn
 If 4000 < SysErr Then
 Print "Motion Error = ", SysErr
 Off 10, Forced
 On 12, Forced
 Else
 Print "Other Error = ", SysErr
 Off 11, Forced
 On 13, Forced
 EndIf

Fend

F

Error Statement

130 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Error Statement

Generates a user error.

Syntax
(1) Error task Number, errorNumber
(2) Error errorNumber

Parameters
taskNumber Optional. Integer expression representing a task number. Range from 0 to 16.

“0” specifies the current task.
errorNumber Integer expression representing a valid error number. User error numbers range

is from 8000 to 8999.

Description
Use the Error statement to generate system or user defined errors. You can define user error labels
and descriptions by using the User Error Editor in the EPSON RC+ development environment.

See Also
Era, Erl, Err, OnErr

Error Statement Example

#define ER_VAC 8000

If Sw(vacuum) = Off Then
 Error ER_VAC
EndIf

S

Ert Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 131

Ert Function

Returns the task number in which an error occurred.

Syntax
Ert

Return Values
The task number in which the error occurred.

Description
Ert is used when an error occurs to determine in which task the error occurs. The number returned
will be between 1and 16.

See Also
Era, Erl, Err, ErrMsg$, OnErr, Trap

Ert Function Example
The Following items are returned in the program example below.

In which task the error occurred (Ert function)
Where the error occurred (Erl function)
On which joint the error occurred (Era function)

Function main
 OnErr Goto eHandler
 Do
 Call PickPlace
 Loop
 Exit Function
eHandler:
 Print "The Error code is ", Err
 Print "The Error Message is ", ErrMsg$(Err)
 errTask = Ert
 If errTask > 0 Then
 Print "Task number in which error occurred is ", errTask
 Print "The line where the error occurred is Line ", Erl(errTask)
 If Era(errTask) > 0 Then
 Print "Joint which caused the error is ", Era(errTask)
 EndIf
 EndIf
Fend

> F

EStopOn Function

132 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

EStopOn Function

Return the Emergency Stop status.

Syntax
EstopOn

Return Values
True if the status is Emergency Stop, otherwise False.

Description
EStopOn function is used only for NoEmgAbort task (special task using NoEmgAbort at Xqt).

See Also
ErrorOn, SafetyOn, Wait, Xqt

EstopOn Function Example
The following example shows a program that monitors the Emergency Stop and switches the I/O
On/Off when Emergency Stop occurs.

Notes
Forced Flag

This program example uses Forced flag for On/Off command.
Be sure that the I/O outputs change during error, or at Emergency Stop or Safety Door Open when
designing the system.

Error Handling
As this program, finish the task promply after completing the error handling.

Outputs OFF during Emergency Stop
As this program example, when the task executes I/O On/Off after the Emergency Stop, uncheck the
[Controller]-[Preferences]-[Outputs off during emergency stop] check box. If this check box is checked,
the execution order of turn Off by the controller and turn On using the task are not guaranteed.

Function main

 Xqt EStopMonitor, NoEmgAbort
 :
 :
Fend

Function EStopMonitor
 Wait EStopOn
 Print "EStop !!!"
 Off 10, Forced
 On 12, Forced
Fend

F

Exit Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 133

Exit Statement

Exits a loop construct or function.

Syntax
Exit { Do | For | Function }

Description
The Exit statement syntax has these forms:

Statement Description
Exit Do Provides a way to exit a Do...Loop statement. It can be used only inside a Do...Loop

statement. Exit Do transfers control to the statement following the Loop statement.
When used within nested Do...Loop statements, Exit Do transfers control to the loop
that is one nested level above the loop where Exit Do occurs.

Exit For Provides a way to exit a For loop. It can be used only in a For...Next loop. Exit For
transfers control to the statement following the Next statement. When used within
nested For loops, Exit For transfers control to the loop that is one nested level above
the loop where Exit For occurs.

Exit Function Immediately exits the Function procedure in which it appears. Execution continues
with the statement following the statement that called the Function.

See Also

Do...Loop, For...Next, Function...Fend

Exit Statement Example

For i = 1 To 10
 If Sw(1) = On Then
 Exit For
 EndIf
 Jump P(i)
Next i

S

Find Statement

134 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Find Statement

Specifies or displays the condition to store coordinates during motion.

Syntax
Find [inputCondition]

Parameters
inputCondition The following functions and operators are available.

Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemW, Ctr
Operators : And, Or, Xor
<Example> Find Sw(5) = On
 Find Sw(5) = On And Sw(6) = Off

Description

Find statement can be used by itself or as a modifier of a motion command.

The Find condition must include at least one of the functions above.

When variables are included in the Find condition, their values are computed when setting the Find
condition. No use of variable is recommended. Otherwise, the condition may be an unintended
condition. Multiple Find statements are permitted. The most recent Find condition remains current.

When parameters are omitted, the current Find definition is displayed.

Notes
Find Setting at Main Power On

At power on, the Find condition is:
Find Sw(0) = On 'Input bit 0 is on

Use of PosFound Function to Verify Find
Use PosFound function to verify if the Find condition has been satisfied after executing a motion
command using Find modifier.

See Also

Sw, In, InW, Oport, Out, FindPos, Go, Jump, PosFound

Find Statement Example

Find Sw(5) = On
Go P10 Find
If PosFound Then
 Go FindPos
Else
 Print "Cannot find the sensor signal."
EndIf

S >

FindPos Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 135

FindPos Function

Returns a robot point stored by Fine during a motion command.

Syntax
FindPos

Return Values
A robot point that was stored during a motion command using Find.

See Also
Find, Go, Jump, PosFound, CurPos, InPos

FindPos Function Example

Find Sw(5) = On
Go P10 Find
If PosFound Then
 Go FindPos
Else
 Print "Cannot find the sensor signal."
EndIf

F

Fine Statement

136 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Fine Statement

Specifies and displays the positioning accuracy for target points.

Syntax
(1) Fine axis1, axis2, axis3, axis4, [axis5], [axis6]
(2) Fine

Parameters
axis1 Integer expression ranging from (0 to 65535) which represents the allowable positioning

error for the 1st joint.
axis2 Integer expression ranging from (0 to 65535) which represents the allowable positioning

error for the 2nd joint.
axis3 Integer expression ranging from (0 to 65535) which represents the allowable positioning

error for the 3rd joint.
axis4 Integer expression ranging from (0 to 65535) which represents the allowable positioning

error for the 4th joint.
axis5 Optional. Integer expression ranging from (0 to 65535) which represents the allowable

positioning error for the 5th joint.
axis6 Optional. Integer expression ranging from (0 to 65535) which represents the allowable

positioning error for the 6th joint.

Return Values
When used without parameters, Fine displays the current fine values for each of the 4 or 6 axes,
depending on the robot type.

Description
Fine specifies, for each joint, the allowable positioning error for detecting completion of any given
move.

This positioning completion check begins after the CPU has completed sending the target position
pulse to the servo system. Due to servo delay, the robot will not yet have reached the target position.
This check continues to be executed every few milliseconds until each joint has arrived within the
specified range setting. Positioning is considered complete when all axes have arrived within the
specified ranges. Once positioning is complete program control is passed to the next statement,
however, servo system keeps the control of the robot target position.

When relatively large ranges are used with the Fine instruction, the positioning will be confirmed
relatively early in the move, and executes the next statement.

The default Fine settings depend on the robot type. Refer to your robot manual for details.

Notes
Cycle Times and the Fine Instruction

The Fine value does not affect the acceleration or deceleration control of the manipulator arm.
However, smaller Fine values can cause the system to run slower because it may take the servo
system extra time (a few milliseconds) to get within the acceptable position range. Once the arm is
located within the acceptable position range (defined by the Fine instruction), the CPU executes the
next user instruction. (Keep in mind that all activated axes must be in position before the CPU can
execute the next user instruction.)

> S

Fine Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 137

Initialization of Fine (by Motor On, SLock, SFree)
Any time the following commands are used the Fine value is initialized to default values: SLock,
SFree, Motor instructions.
Make sure that you reset Fine values after one of the above commands execute.

Potential Errors

If Fine positioning is not completed within about 2 seconds, Error 4024 will occur. This error normally
means the servo system balance needs to be adjusted. (Call your distributor for assistance)

See Also

Accel, AccelR, AccelS, Arc, Go, Jump, Move, Speed, SpeedR, SpeedS, Pulse

Fine Statement Example
The examples below show the Fine statement used in a program function, and used from the monitor
window.

Function finetest
 Fine 5, 5, 5, 5 'reduce precision to +/- 1 Pulse
 Go P1
 Go P2
Fend

> Fine 10, 10, 10, 10
>
> Fine
10, 10, 10, 10

Fine Function

138 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Fine Function

Returns Fine setting for a specified joint.

Syntax
Fine(joint)

Parameters
joint Integer expression representing the joint number for which to retrieve the Fine setting.

Return Values
Real value.

See Also
Accel, AccelS, Arc, Go, Jump, Move, Speed, SpeedS, Pulse

Fine Function Example
This example uses the Fine function in a program:

Function finetst
 Integer a
 a = Fine(1)
Fend

F

Fix Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 139

Fix Function

Returns the integer portion of a real number.

Syntax
Fix(number)

Parameters
number Real expression containing number to fix.

Return Values
An integer value containing the integer portion of the real number.

See Also
Int

Fix Function Example

>print Fix(1.123)
 1
>

F

FmtStr$ Function

140 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

FmtStr$ Function

Format a numeric expression.

Syntax
FmtStr$ (numeric expression, strFormat)

Parameters
numeric expression Numaric expression to be formatted.
strFormat Format specification string.

Return Values
A string containing the formatted expression.

Description
Use FmtStr$ to format a numeric expression into a string.

Numeric Format Specifiers
Fromat a numeric expression.
Character Description
None Display the number with no formatting.
(0) Digit placeholder. Display a digit or a zero. If the expression has a digit in the position

where “0” appears in the format string, display it; otherwise, display a zero in that position.
If the number has fewer digits than there are “0” (on either side of the decimal) in the
format expression, display leading or trailing “0”. If the number has more digits to the right
of the decimal separator than there are “0” to the right of the decimal separator in the
format expression, round the number to as many decimal places as there are “0”. If the
number has more digits to the left of the decimal separator than there are “0” to the left of
the decimal separator in the format expression, display the extra digits without
modification.

(#) Digit placeholder. Display a digit or nothing. If the expression has a digit in the position
where “#” appears in the format string, display it; otherwise, display nothing in that
position. This symbol works like the 0 digit placeholder, except that leading and trailing
“0” aren't displayed if the number has the same or fewer digits than there are “#”
characters on either side of the decimal separator in the format expression.

(.) Decimal placeholder. In some locales, a comma is used as the decimal separator. The
decimal placeholder determines how many digits are displayed to the left and right of the
decimal separator. If the format expression contains only number signs to the left of this
symbol, numbers smaller than 1 begin with a decimal separator. To display a leading
zero displayed with fractional numbers, use “0” as the first digit placeholder to the left of
the decimal separator. The actual character used as a decimal placeholder in the
formatted output depends on the Number Format recognized by your system.

(,) Thousand separator. In some locales, a period is used as a thousand separator. The
thousand separator separates thousands from hundreds within a number that has four or
more places to the left of the decimal separator. Standard use of the thousand separator
is specified if the format contains a thousand separator surrounded by digit placeholders
(0 or #). Two adjacent thousand separators or a thousand separator immediately to the
left of the decimal separator (whether or not a decimal is specified) means "scale the
number by dividing it by 1000, rounding as needed." For example, you can use the
format string "##0,," to represent 100 million as “100”. Numbers smaller than 1 million are
displayed as “0”. Two adjacent thousand separators in any position other than
immediately to the left of the decimal separator are treated simply as specifying the use
of a thousand separator. The actual character used as the thousand separator in the
formatted output depends on the Number Format recognized by your system.

F

FmtStr$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 141

See Also
Left$, Right$, Str$

FmtStr$ Function Example

Function SendDateCode

 String d$, f$

 f$ = FmtStr$(10, "000.00")
 OpenCom #1
 Print #1, f$
 CloseCom #1
Fend

For...Next Statement

142 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

For...Next Statement

The For...Next instructions are used together to create a loop where instructions located
between For and Next are executed multiple times as specified by the user.

Syntax
For var = initValue To finalValue [Step increment]

statements
Next [var]

Parameters
var The counting variable used with the For...Next loop. This variable is normally

defined as an integer but may also be defined as a Real variable.
initValue The initial value for the counter var.
finalValue The final value of the counter var. Once this value is met, the For...Next loop is

complete and execution continues starting with the statement following the Next
instruction.

increment An optional parameter which defines the counting increment for each time the
Next statement is executed within the For...Next loop. This variable may be
positive or negative. However, if the value is negative, the initial value of the
variable must be larger than the final value of the variable. If the increment value
is left out the system automatically increments by “1”.

statements Any valid SPEL+ statements can be inserted inside the For...Next loop.

Description
For...Next executes a set of statements within a loop a specified number of times. The beginning of
the loop is the For statement. The end of the loop is the Next statement. A variable is used to count
the number of times the statements inside the loop are executed.

The first numeric expression (initValue) is the initial value of the counter. This value may be positive
or negative as long as the finalValue variable and Step increment correspond correctly.

The second numeric expression (finalValue) is the final value of the counter. This is the value which
once reached causes the For...Next loop to terminate and control of the program is passed on to the
next instruction following the Next instruction.

Program statements after the For statement are executed until a Next instruction is reached. The
counter variable (var) is then incremented by the Step value defined by the increment parameter. If the
Step option is not used, the counter is incremented by “1 (one)”.

The counter variable (var) is then compared with the final value. If the counter is less than or equal to
the final value, the statements following the For instruction are executed again. If the counter variable
is greater than the final value, execution branches outside of the For...Next loop and continues with
the instruction immediately following the Next instruction.

S

For...Next Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 143

Notes
Negative Step Values:

If the value of the Step increment (increment) is negative, the counter variable (var) is decremented
(decreased) each time through the loop and the initial value must be greater than the final value for
the loop to work.

Variable Following Next is Not Required:
The variable name following the Next instruction may be omitted. However, for programs that contain
nested For...Next loops, it is recommended to include the variable name following the Next instruction
to aid in quickly identifying loops.

See Also

Do...Loop

For...Next Statement Example

Function fornext
 Integer counter
 For counter = 1 to 10
 Go Pctr
 Next counter

 For counter = 10 to 1 Step -1
 Go Pctr
 Next counter
Fend

Function...Fend Statement

144 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Function...Fend Statement

A function is a group of program statements which includes a Function statement as the first
statement and a Fend statement as the last statement.

Syntax
Function funcName [(argList)] [As type]

statements
Fend

Parameters
funcName The name which is given to the specific group of statements bound between the

Function and Fend instructions. The function name must contain alphanumeric
characters and may be up to 32 characters in length. Underscores are also
allowed.

argList Optional. List of variables representing arguments that are passed to the
Function procedure when it is called. Multiple variables are separated by
commas.

The arglist argument has the following syntax:
[{ByRef | ByVal}] varName [()] As type

ByRef Optional. Specify ByRef when you want any changes in the value of the variable

to be seen by the calling function.
ByVal Optional. Specify ByVal when you do not want any changes in the value of the

variable to be seen by the calling function. This is the default.
varName Required. Name of the variable representing the argument; follows standard

variable naming conventions.
As type Required. You must declare the type of argument.

Return Values
Value whose data type is specified with the As clause at the end of the function declaration.

Description
The Function statement indicates the beginning of a group of SPEL+ statements. To indicate where a
function ends we use the Fend statement. All statements located between the Function and Fend
statements are considered part of the function.

The Function...Fend combination of statements could be thought of as a container where all the
statements located between the Function and Fend statements belong to that function. Multiple
functions may exist in one program file.

See Also
Call, Fend, Halt, Quit, Return, Xqt

S

Function...Fend Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 145

Function...Fend Statement Example
The following example shows 3 functions which are within a single file. The functions called task2 and
task3 are executed as background tasks while the main task called main executes in the foreground.

Function main
 Xqt 2, task2 'Execute task2 in background
 Xqt 3, task3 'Execute task3 in background
 '....more statements here
Fend

Function task2
 Do
 On 1
 On 2
 Off 1
 Off 2
 Loop
Fend

Function task3
 Do
 On 10
 Wait 1
 Off 10
 Loop
Fend

Global Statement

146 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Global Statement

Declares variables with the global scope. Global variables can be accessed from anywhere.

Syntax
Global [Preserve] dataType varName [(subscripts)] [, varName [(subscripts)] , ...]

Parameters
Preserve If Preserve is specified, then the variable retains its values. The values are

cleared by project changes. If Preserve is omitted, the variable doesn’t retain its
values.

dataType Data type including Boolean, Integer, Long, Real, Double, Byte, or String.
varName Variable name. Names may be up to 32 characters in length.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 to the upper

bound value.
 The total available number of array elements for global preserve variables is 100

for strings and 1000 for all other types.
 The total available number of array elements for global variables is 1000 for

strings and 10000 for all other types.
 To calculate the total elements used in an array, use the following formula. (If a

dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)

Description

Global variables are variables which can be used in more than 1 file within the same project. They are
cleared whenever a function is started from the Run window or Operator window unless they are
declared with the Preserve option.

When declared in Preserve option, the variable retains the value at turning off the controller.

Global Preserve variables can be used with the VB Guide option.

It is recommended that global variable names begin with a "g_" prefix to make it easy to recognize
globals in a program. For example:

Global Long g_PartsCount

See Also
Boolean, Byte, Double, Integer, Long, Real, String

S

Global Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 147

Global Statement Example
The following example shows 2 separate program files. The first program file defines some global
variables and initializes them. The second file then uses these global variables.

FILE1 (MAIN.PRG)

Global Integer status1
Global Real numsts

Function Main
 Integer I

 status1 = 10

The following example shows 2 separate program files. The first program file defines some global
variables and initializes them. The second file then also uses these global variables.

FILE1 (MAIN.PRG)

Global Integer g_Status
Global Real g_MaxValue

Function Main

 g_Status = 10
 g_MaxValue = 1.1
 .
 .
Fend

FILE2 (TEST.PRG)

Function Test

 Print "status1 = , g_Status
 Print "MaxValue = , g_MaxValue
 .
 .
Fend

Go Statement

148 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Go Statement

Moves the arm using point to point motion from the current position to the specified
point or X,Y,Z,U, V, W position. The Go instruction can move any combination of
1-6 joints at the same time.

Syntax
Go destination [CP] [LJM [orientationFlag]] [searchExpr] [!...!]

Parameters
destination The target destination of the motion using a point expression.
CP Optional. Specifies continuous path motion.
LJM Optional. Convert the target destination using LJM function.
orientationFlag Optional. Specifies a parameter that selects an orientation flag for LJM function.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and other
commands during motion.

Description

Go simultaneously moves all joints of the robot arm using point to point motion. The destination for the
Go instruction can be defined in a variety of ways:
 - Using a specific point to move to. For example: Go P1.
 - Using an explicit coordinate position to move to. For example: Go XY(50, 400, 0, 0).
 - Using a point with a coordinate offset. For example: Go P1 +X(50).
 - Using a point but with a different coordinate value. For example: Go P1 :X(50).

The path is not predictable because the each joint interpolates between the current point and the
target point. Be careful of the interference with peripherals.
The Speed instruction determines the arm speed for motion initiated by the Go instruction. The Accel
instruction defines the acceleration.
With CP parameter, the arm can accelerate for the next motion command while the arm starts
decelerating to a stop. In this case, the arm is not positioned at the target point.
With LJM parameter, the arm moves to the point into where the target point is converted using LJM
function, with the current point as reference point,

Go LJM (P1, Here,1)
can be

Go P1 LJM 1

At this point, the original point data P1 does not change.
LJM parameter is available for the 6-axis and RS series robots.
When using orientationFlag with the default value, it can be ommited.

Go P1 LJM

> S

Go Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 149

Notes
Difference between Go and Move

The Move instruction and the Go instruction each cause the robot arm to move. However, the primary
difference between the 2 instructions is that the Go instruction causes point to point motion where as
the Move instruction causes the arm to move in a straight line. The Go instruction is used when the
user is primarily concerned with the orientation of the arm when it arrives on point. The Move
instruction is used when it is important to control the path of the robot arm while it is moving.

Difference between Go and Jump
The Jump instruction and the Go instruction each cause the robot arm to move in a point to point type
fashion. However, the JUMP instruction has 1 additional feature. Jump causes the robot end effector
to first move up to the LimZ value, then in a horizontal direction until it is above the target point, and
then finally down to the target point. This allows Jump to be used to guarantee object avoidance and
more importantly to improve cycle times for pick and place motions.

Proper Speed and Acceleration Instructions with Go
The Speed and Accel instructions are used to specify the speed and acceleration of the manipulator
during motion caused by the Go instruction. Pay close attention to the fact that the Speed and Accel
instructions apply to point to point type motion (like that for the Go instruction) while linear and circular
interpolation motion uses the SpeedS and AccelS instructions.

Using Go with the Optional Till Modifier
The optional Till modifier allows the user to specify a condition to cause the robot to decelerate to a
stop at an intermediate position prior to completing the motion caused by the Go instruction. If the Till
condition is not satisfied, the robot travels to the target position. The Go with Till modifier can be used
in 2 ways as described below:

(1) Go with Till Modifier
 Checks if the current Till condition becomes satisfied. If satisfied, this command completes by

decelerating and stopping the robot at an intermediate position prior to completing the motion
caused by the Go instruction.

(2) Go with Till Modifier, Sw(Input bit number) Modifier, and Input Condition
 This version of the Go with Till modifier allows the user to specify the Till condition on the

same line with the Go instruction rather than using the current definition previously defined for
Till. The condition specified is simply a check against one of the inputs. This is accomplished
through using the Sw instruction. The user can check if the input is On or Off and cause the
arm to stop based on the condition specified. This feature works almost like an interrupt
where the motion is interrupted (stopped) once the Input condition is met. If the input
condition is never met during the robot motion then the arm successfully arrives on the point
specified by destination.

Using Go with the Optional Find Modifier
The optional Find modifier allows the user to specify a condition to cause the robot to record a position
during the motion caused by the Go instruction. The Go with Find modifier can be used in 2 ways as
described below:

(1) Go with Find Modifier:
 Checks if the current Find condition becomes satisfied. If satisfied, the current position is

stored in the special point FindPos.
(2) Go with Find Modifier, Sw(Input bit number) Modifier, and Input Condition:
 This version of the Go with Find modifier allows the user to specify the Find condition on the

same line with the Go instruction rather than using the current definition previously defined for
Find. The condition specified is simply a check against one of the inputs. This is
accomplished through using the Sw instruction. The user can check if the input is On or Off
and cause the current position to be stored in the special point FindPos.

Go Instruction Always Decelerates to a Stop
The Go instruction always causes the arm to decelerate to a stop prior to reaching the final destination
of the move.

Go Statement

150 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Potential Errors
Attempt to Move Outside of Robots Work Envelope
When using explicit coordinates with the Go instruction, you must make sure that the coordinates
defined are within the robots valid work envelope. Any attempt to move the robot outside of the valid
work envelope will result in an error.

See Also

!...! Parallel Processing, Accel, Find, Jump, Move, Pass, Pn= (Point Assignment), Pulse, Speed, Sw,
Till

Go Example
The example shown below shows a simple point to point move between points P0 and P1 and then
moves back to P0 in a straight line. Later in the program the arm moves in a straight line toward point
P2 until input #2 turns on. If input #2 turns On during the Move, then the arm decelerates to a stop
prior to arriving on point P2 and the next program instruction is executed.

Function sample

 Integer i

 Home
 Go P0
 Go P1
 For i = 1 to 10
 Go P(i)
 Next i
 Go P2 Till Sw(2) = On
 If Sw(2) = On Then
 Print "Input #2 came on during the move and"
 Print "the robot stopped prior to arriving on"
 Print "point P2."
 Else
 Print "The move to P2 completed successfully."
 Print "Input #2 never came on during the move."
 EndIf
Fend

Some syntax examples from the command window are shown below:

>Go Here +X(50) ' Move only in the X direction 50 mm from
 ' current position
>Go P1 ' Simple example to move to point P1
>Go P1 :U(30) ' Move to P1 but use +30 as the position for
 ' the U joint to move to
>Go P1 /L ' Move to P1 but make sure the arm ends up
 ' in lefty position
>Go XY(50, 450, 0, 30) ' Move to position X=50, Y=450, Z=0, U=30

<Another Coding Example>
Till Sw(1) = Off And Sw(2) = On ' Specifies Till conditions for
 ' inputs 1 & 2
Go P1 Till ' Stop if current Till condition
 ' defined on previous line is met
Go P2 Till Sw(2) = On ' Stop if Input Bit 2 is On
Go P3 Till ' Stop if current Till condition
 ' defined on previous line is met

GoSub...Return

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 151

GoSub...Return

GoSub transfers program control to a subroutine. Once the subroutine is complete, program
control returns back to the line following the GoSub instruction which initiated the subroutine.

Syntax
GoSub { label }

{ label:}
statements
Return

Parameters
label When the user specifies a label, the program execution will jump to the line on

which this label resides. The label can be up to 32 characters in length.
However, the first character must be an alphabet character (not numeric).

Description

The GoSub instruction causes program control to branch to the user specified statement label. The
program then executes the statement on that line and continues execution through subsequent line
numbers until a Return instruction is encountered. The Return instruction then causes program control
to transfer back to the line which immediately follows the line which initiated the GoSub in the first
place. (i.e. the GoSub instruction causes the execution of a subroutine and then execution returns to
the statement following the GoSub instruction.) Be sure to always end each subroutine with Return.
Doing so directs program execution to return to the line following the GoSub instruction.

Potential Errors
Branching to Non-Existent Statement

If the GoSub instruction attempts to branch control to a non-existent label then an Error 3108 will be
issued.

Return Found Without GoSub
A Return instruction is used to "return" from a subroutine back to the original program which issued the
GoSub instruction. If a Return instruction is encountered without a GoSub having first been issued
then an Error 2383 will occur. A stand alone Return instruction has no meaning because the system
doesn't know where to Return to.

See Also

GoTo, OnErr, Return

S

GoSub...Return

152 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

GoSub Statement Example
The following example shows a simple function which uses a GoSub instruction to branch to a label
and execute some I/O instructions then return.

Function main
 Integer var1, var2

 GoSub checkio 'GoSub using Label
 On 1
 On 2
 Exit Function

checkio: 'Subroutine starts here
 var1 = In(0)
 var2 = In(1)
 If var1 = 1 And var2 = 1 Then
 On 1
 Else
 Off 1
 EndIf
 Return 'Subroutine ends here
Fend

GoTo Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 153

GoTo Statement

The GoTo instruction causes program control to branch unconditionally to a designated
statement label.

Syntax
GoTo { label }

Parameters
label Program execution will jump to the line on which the label resides. The label can

be up to 32 characters. However, the first character must be an alphabetic
character (not numeric).

Description

The GoTo instruction causes program control to branch to the user specified label. The program then
executes the statement on that line and continues execution from that line on. GoTo is most
commonly used for jumping to an exit label because of an error.

Notes
Using Too Many GoTo's

Please be careful with the GoTo instruction since using too many GoTo's in a program can make the
program difficult to understand. The general rule is to try to use as few GoTo instructions as possible.
Some GoTo's are almost always necessary. However, jumping all over the source code through
using too many GoTo statements is an easy way to cause problems.

See Also

GoSub, OnErr

GoTo Statement Example

The following example shows a simple function which uses a GoTo instruction to branch to a line label.

Function main

 If Sw(1) = Off Then
 GoTo mainAbort
 EndIf
 Print "Input 1 was On, continuing cycle"
 .
 .
 Exit Function

mainAbort:
 Print "Input 1 was OFF, cycle aborted!"
Fend

S

Halt Statement

154 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Halt Statement

Temporarily suspends execution of a specified task.

Syntax
Halt taskIdentifier

Parameters
taskIdentifier Task name or integer expression representing the task number.

A task name is the function name used in an Xqt statement or a function started
from the Run window or Operator window. If an integer expression is used, the
range is from 1 to 16 for normal tasks and from 257 to 261 for trap tasks.

Description

Halt temporarily suspends the task being executed as specified by the task name or number.

To continue the task where it was left off, use Resume. To stop execution of the task completely, use
Quit. To display the task status, click the Task Manager Icon on the EPSON RC+ Toolbar to run the
Task manager.

Halt also pauses the task when the specified task is NoPause task or NoEmgAbort task (special task
using NoPause or NoEmgAbort at Xqt).

See Also
Quit, Resume, Xqt

Halt Statement Example

The example below shows a function named "flicker" that is started by Xqt, then is temporarily stopped
by Halt and continued again by Resume.

Function main
 Xqt flicker 'Execute flicker function

 Do
 Wait 3 'Execute task flicker for 3 seconds
 Halt flicker

 Wait 3 'Halt task flicker for 3 seconds
 Resume flicker

 Loop
Fend

Function flicker
 Do
 On 1
 Wait 0.2
 Off 1
 Wait 0.2
 Loop
Fend

S

Hand Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 155

Hand Statement

Sets the hand orientation of a point.

Syntax
(1) Hand point, [Lefty | Righty]
(2) Hand

Parameters
point Pnumber or P(expr) or point label.
Lefty | Righty Hand orientation.

Return Values

When both parameters are omitted, the hand orientation is displayed for the current robot position.
If Lefty | Righty is ommited, the hand orientation for the specified point is displayed.

See Also
Elbow, Hand Function, J4Flag, J6Flag, Wrist, J1Flag, J2Flag

Hand Statement Example

Hand P0, Lefty
Hand pick, Righty
Hand P(myPoint), myHand

P1 = -364.474, 120.952, 469.384, 72.414, 1.125, -79.991

Hand P1, Righty
Go P1

Hand P1, Lefty
Go P1

> S

Hand Function

156 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Hand Function

Returns the hand orientation of a point.

Syntax
Hand [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the hand orientation of the current

robot position is returned.

Return Values
1 Righty (/R)
2 Lefty (/L)

See Also
Elbow, Wrist, J4Flag, J6Flag, J1Flag, J2Flag

Hand Function Example

Print Hand(pick)
Print Hand(P1)
Print Hand
Print Hand(P1 + P2)

F

Here Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 157

Here Statement

Teach a robot point at the current position.

Syntax
Here point

Parameters
point Pnumber or P(expr) or point label.

Notes
The Here statement and Parallel Processing

You cannot use both of the Here statement and parallel processing in one motion command like this:
Go Here :Z(0) ! D10; MemOn 1 !

Be sure to change the program like this:
P999 = Here
Go P999 Here :Z(0) ! D10; MemOn 1 !

The Here statement and Multitask
If the Here statement is executed in a multitask function executed by Xqt while the robot is moved by
Move, Go, etc., in the main task, the task will be stopped due to an error.
Current robot position can be retrieved by CurPOS.

Example

Function Xqt_PrintHere
Do

Print CurPOS
Wait 0.1

Loop
Fend
Function main

Xqt 10, Xqt_PrintHere
Go P0

Fend

See Also

Here Function, CurPoS

Here Statement Example

Here P1
Here pick

S

Here Function

158 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Here Function

Returns current robot position as a point.

Syntax
Here

Return Values
A point representing the current robot position.

Description
Use Here to retrieve the current position of the current manipulator.

See Also
Here Statement

Here Function Example

P1 = Here

F

Hex$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 159

Hex$ Function

Returns a string representing a specified number in hexadecimal format.

Syntax
Hex$(number)

Parameters
number Integer expression.

Return Values
Returns a string containing the ASCII representation of the number in hexadecimal format.

Description
Hex$ returns a string representing the specified number in hexadecimal format. Each character is
from 0 to 9 or A to F. Hex$ is especially useful for examining the results of the Stat function.

See Also
Str$, Stat, Val

Hex$ Function Example

> print hex$(stat(0))
A00000
> print hex$(255)
FF

> F

Home Statement

160 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Home Statement

Moves the robot arm to the user defined home position.

Syntax
Home

Description
Executes low speed Point to Point motion to the Home (standby) position specified by HomeSet, in the
homing order defined by Hordr.

Normally, for SCARA robots (including RS series), the Z joint (J3) returns first to the HomeSet position,
then the J1, J2 and J4 joints simultaneously return to their respective HomeSet coordinate positions.
The Hordr instruction can change this order of the axes returning to their home positions.

Note
Home Status Output:

When the robot is in its Home position, the controller's system Home output is turned ON.

Potential Errors
Attempting to Home without HomeSet Values Defined

Attempting to Home the robot without setting the HomeSet values will result in an Error 143 being
issued.

See Also

HomeClr, HomeDef, HomeSet, Hordr

Home Statement Example
The Home instruction can be used in a program such as this:

Function InitRobot
 Reset
 If Motor = Off Then
 Motor On
 EndIf
 Home
Fend

Or it can be issued from the Command window like this:

> home
>

> S

HomeClr Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 161

HomeClr Function

Clears the home position definition.

Syntax
HomeClr

Description
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
HomeDef, HomeSet

HomeClr Function Example
This example uses the HomeClr function in a program:

Function ClearHome

 If HomeDef = True Then
 HomeClr
 EndIf
Fend

F

HomeDef Function

162 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

HomeDef Function

Returns whether home position has been defined or not.

Syntax
HomeDef

Return Values
True if home position has been defined, otherwise False.

See Also
HomeClr, HomeSet

HomeDef Function Example
This example uses the HomeDef function in a program:

Function DisplayHomeSet

 Integer i

 If HomeDef = False Then
 Print "Home is not defined"
 Else
 Print "Home values:"
 For i = 1 To 4
 Print "J", i, " = ", HomeSet(i)
 Next i
 EndIf
Fend

F

HomeSet Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 163

HomeSet Statement

Specifies and displays the Home position.

Syntax

(1) HomeSet j1Pulses, j2Pulses, j3Pulses, j4Pulses, [j5Pulses], [j6Pulses]
(2) HomeSet

Parameters

j1Pulses The home position encoder pulse value for joint 1.
j2Pulses The home position encoder pulse value for joint 2.
j3Pulses The home position encoder pulse value for joint 3.
j4Pulses The home position encoder pulse value for joint 4.
j5Pulses Optional for 6-axis robots. The home position encoder pulse value for joint 5.
j6Pulses Optional for 6-axis robots. The home position encoder pulse value for joint 6.

Return Values

Displays the pulse values defined for the current Home position when parameters are omitted.

Description

Allows the user to define a new home (standby) position by specifying the encoder pulse values for
each of the robot joints.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Potential Errors
Attempting to Home without HomeSet Values Defined:

Attempting to Home the robot without setting the HomeSet values will result in an Error 2228 being
issued.

Attempting to Display HomeSet Values without HomeSet Values Defined:
Attempting to display home position pulse values without HomeSet values defined causes an Error
2228.

See Also

Home, HomeClr, HomeDef, Hordr, Pls

HomeSet Statement Example

The following examples are done from the command window:

> homeset 0,0,0,0 'Set Home position at 0,0,0,0
> homeset
 0 0
 0 0

> home 'Robot homes to 0,0,0,0 position

Using the Pls function, specify the current position of the arm as the Home position.

> homeset Pls(1), Pls(2), Pls(3), Pls(4)

> S

HomeSet Function

164 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

HomeSet Function

Returns pulse values of the home position for the specified joint.

Syntax
HomeSet(jointNumber)

Parameters
jointNumber Integer expression representing the joint number to retrieve the HomeSet value for.

Return Values
Returns pulse value of joint home position. When jointNumber is “0”, returns “1” when HomeSet has
been set or “0” if not.

See Also
HomeSet Statement

HomeSet Function Example
This example uses the HomeSet function in a program:

Function DisplayHomeSet

 Integer i

 If HomeSet(0) = 0 Then
 Print "HomeSet is not defined"
 Else
 Print "HomeSet values:"
 For i = 1 To 4
 Print "J", i, " = ", HomeSet(i)
 Next i
 EndIf
Fend

F

Hordr Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 165

Hordr Statement

Specifies or displays the order of the axes returning to their Home positions.

Syntax
(1) Hordr step1, step2, step3, step4, [step5] ,[step6]
(2) Hordr

Parameters
step1 Bit pattern that defines which joints should home during the 1st step of the homing

process.
step2 Bit pattern that defines which joints should home during the 2nd step of the homing

process.
step3 Bit pattern that defines which joints should home during the 3rd step of the homing

process.
step4 Bit pattern that defines which joints should home during the 4th step of the homing

process.
step5 For 6 axis robots. Bit pattern that defines which joints should home during the 5th step of

the homing process.
step6 For 6 axis robots. Bit pattern that defines which joints should home during the 6th step of

the homing process.

Return Values
Displays current Home Order settings when parameters are omitted.

Description
Hordr specifies joint motion order for the Home command. (i.e. Defines which joint will home 1st,
which joint will home 2nd, 3rd, etc.)

The purpose of the Hordr instruction is to allow the user to change the homing order. The homing
order is broken into 4 or 6 separate steps, depending on robot type. The user then uses Hordr to
define the specific joints which will move to the Home position during each step. It is important to
realize that more than one joint can be defined to move to the Home position during a single step.
This means that all joints can potentially be homed at the same time. For SCARA robots (including RS
series, 4 axis robots), it is recommended that the Z joint normally be defined to move to the Home
position first (in Step 1) and then allow the other joints to follow in subsequent steps.

The Hordr instruction expects that a bit pattern be defined for each of the steps. Each joint is assigned
a specific bit. When the bit is set to “1” for a specific step, then the corresponding joint will home.
When the bit is cleared to “0”, then the corresponding axis will not home during that step. The joint bit
patterns are assigned as follows:

Joint: 1 2 3 4 5 6
Bit Number: bit 0 bit 1 bit 2 bit 3 bit 4 bit 5
Binary Code: &B0001 &B0010 &B0100 &B1000 &B10000 &B100000

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

> S

Hordr Statement

166 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

See Also
Home, HomeSet

Hordr Statement Example
Following are some command window examples for SCARA robots (including RS series, 4 axis
robots):

This example defines the home order as J3 in the first step, J1 in second step, J2 in third step, and J4
in the fourth step. The order is specified with binary values.

>hordr &B0100, &B0001, &B0010, &B1000

This example defines the home order as J3 in the first step, then J1, J2 and J4 joints simultaneously in
the second step. The order is specified with decimal values.

>hordr 4, 11, 0, 0

This example displays the current home order in decimal numbers.

>hordr
4, 11, 0, 0
>

Hordr Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 167

Hordr Function

Returns Hordr value for a specified step.

Syntax
Hordr(stepNumber)

Parameters
stepNumber Integer expression representing which Hordr step to retrieve.

Return Values
Integer containing the Hordr value for the specified step.

See Also
Home, HomeSet

Hordr Function Example

Integer a
a = Hordr(1)

> F

Hour Statement

168 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Hour Statement

Displays the accumulated controller operating time.

Syntax
Hour

Description
Displays the amount of time the controller has been turned on and running SPEL. (Accumulated
Operating Time) Time is always displayed in units of hours.

See Also
Time

Hour Statement Example
The following example is done from the Command window:

> hour
2560
>

>

Hour Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 169

Hour Function

Returns the accumulated controller operating time.

Syntax
Hour

Return Values
Returns accumulated operating time of the controller (real number, in hours).

See Also
Time

Hour Function Example

Print "Number of controller operating hours: ", Hour

F

If…Then…Else…EndIf Statement

170 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

If…Then…Else…EndIf Statement

Executes instructions based on a specified condition.

Syntax
(1) If condition Then
 stmtT1
 .
 .
 [ElseIf condition Then]
 stmtT1
 .
 .
 [Else]
 stmtF1
 .
 .
 EndIf

(2) If condition Then stmtT1 [; stmtT2...] [Else stmtF1 [; stmtF2...]]

Parameters
condition Any valid test condition which returns a True (any number besides “0”) or False result

(returned as a “0”). (See sample conditions below)
stmtT1 Executed when the condition is True. (Multiple statements may be put here in a blocked

If...Then...Else style.)
stmtF1 Executed when the condition is False. (Multiple statements may be put here in a blocked

If...Then...Else style.)

Description
(1) If...Then...Else executes stmtT1, etc. when the conditional statement is True. If the condition is

False then stmtF1, etc. are executed. The Else portion of the If...Then...Else instruction is optional.
If you omit the Else statement and the conditional statement is False, the statement following the
EndIf statement will be executed. For blocked If...Then...Else statements the EndIf statement is
required to close the block regardless of whether an Else is used or not.

(2) If...Then...Else can also be used in a non blocked fashion. This allows all statements for the

If...Then...Else to be put on the same line. Please note that when using If...Then...Else in a non
blocked fashion, the EndIf statement is not required. If the If condition specified in this line is
satisfied (True), the statements between the Then and Else are executed. If the condition is not
satisfied (False), the statements following Else are executed. The Else section of the
If...Then...Else is not required. If there is no Else keyword then control passes on to the next
statement in the program if the If condition is False.

The logical output of the conditional statement is any number excluding “1” when it is True, and “0”
when it is false.

S

If…Then…Else…EndIf Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 171

Notes
Sample Conditions:

a = b :a is equal to b
a < b :b is larger than a
a >= b :a is greater than or equal to b
a <> b :a is not equal to b
a > b :b is smaller than a
a <= b :a is less than or equal to b

Logical operations And, Or and Xor may also be used.

See Also

Else, Select...Case, Do...Loop

If/Then/Else Statement Example

<Single Line If...Then...Else>
The following example shows a simple function which checks an input to determine whether to turn a
specific output on or off. This task could be a background I/O task which runs continuously.

Function main
 Do
 If Sw(0) = 1 Then On 1 Else Off 1
 Loop
Fend

<Blocked If...Then...Else>
The following example shows a simple function which checks a few inputs and prints the status of
these inputs

If Sw(0) = 1 Then Print "Input0 ON" Else Print "Input0 OFF"
'
If Sw(1) = 1 Then
 If Sw(2) = 1 Then
 Print "Input1 On and Input2 ON"
 Else
 Print "Input1 On and Input2 OFF"
 EndIf
Else
 If Sw(2) = 1 Then
 Print "Input1 Off and Input2 ON"
 Else
 Print "Input1 Off and Input2 OFF"
 EndIf
EndIf

<Other Syntax Examples>

If x = 10 And y = 3 Then GoTo 50
If test <= 10 Then Print "Test Failed"
If Sw(0) = 1 Or Sw(1) = 1 Then Print "Everything OK"

In Function

172 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

In Function

Returns the status of the specified Byte port. Each port contains 8 input channels.

Syntax
In(byteportNumber)

Parameters
byteportNumber Integer number representing one eight bit port (one byte).

Return Values
Returns an integer value between 0 and 255. The return value is 8 bits, with each bit corresponding to
1 input channel.

Description
In provides the ability to look at the value of 8 input channels at the same time. The In instruction can
be used to store the 8 I/O channels status into a variable or it can be used with the Wait instruction to
Wait until a specific condition which involves more than 1 I/O channel is met.

Since 8 channels are checked at a time, the return values range from 0 to 255. Please review the
chart below to see how the integer return values correspond to individual input channels.

Input Channel Result (Using Byte port #0)
Return Value 7 6 5 4 3 2 1 0

1 Off Off Off Off Off Off Off On
5 Off Off Off Off Off On Off On

15 Off Off Off Off On On On On
255 On On On On On On On On

Input Channel Result (Using Byte port #2)

Return Value 23 22 21 20 19 18 17 16
3 Off Off Off Off Off Off On On
7 Off Off Off Off Off On On On

32 Off Off On Off Off Off Off Off
255 On On On On On On On On

See Also

InBCD, MemIn, MemOff, MemOn, MemSw, Off, On, OpBCD, Oport, Out, Sw, Wait

F

In Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 173

In Function Example
For the example below lets assume that input channels 20, 21, 22, and 23 are all connected to
sensory devices such that the application should not start until each of these devices are returning an
On signal indicating everything is OK to start. The program example gets the 8 input channels status
of byte port 2 and makes sure that channels 20, 21, 22, and 23 are each On before proceeding. If
they are not On (i.e. returning a value of 1) an error message is given to the operator and the task is
stopped.

In the program, the variable "var1" is compared against the number 239 because in order for inputs 20,
21, 22, and 23 to all be On, then the result of In(2) will be 240 or larger. (We don't care about Inputs
16, 17, 18, and 19 in this case so any values between 240-255 will allow the program to proceed.)

Function main
 Integer var1
 var1 = In(2) 'Get 8 input channels status of byte port 2
 If var1 > 239 Then
 Go P1
 Go P2
 'Execute other motion statements here
 '.
 '.
 Else
 Print "Error in initialization!"
 Print "Sensory Inputs not ready for cycle start"
 Print "Please check inputs 20,21,22, and 23 for"
 Print "proper state for cycle start and then"
 Print "start program again"
 EndIf
Fend

We cannot set inputs from the command window but we can check them. For the examples shown
below, we will assume that the Input channels 1, 5, and 15 are On. All other inputs are Off.

> print In(0)
34
> print In(1)
128
> print In(2)
0

InBCD Function

174 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

InBCD Function

Returns the input status of 8 inputs using BCD format. (Binary Coded Decimal)

Syntax
InBCD(portNumber)

Parameters
portNumber Integer number representing one eight bit port (one byte).

Return Values
Returns as a Binary Coded Decimal (0-9), the input status of the input port (0 to 99).

Description
InBCD simultaneously reads 8 input lines using the BCD format. The portNumber parameter for the
InBCD instruction defines which group of 8 inputs to read where portNumber = 0 means inputs 0 to 7,
portNumber = 1 means inputs 8 to 15, etc.

The resulting value of the 8 inputs is returned in BCD format. The return value may have 1 or 2 digits
between 0 and 99. The 1st digit (or 10's digit) corresponds to the upper 4 outputs of the group of 8
outputs selected by portNumber. The 2nd digit (or 1's digit) corresponds to the lower 4 outputs of the
group of 8 outputs selected by portNumber.

Since valid entries in BCD format range from 0 to 9 for each digit, every I/O combination cannot be
met. The table below shows some of the possible I/O combinations and their associated return values
assuming that portNumber is 0.

Input Settings (Input number)
Return Value 7 6 5 4 3 2 1 0

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 On Off Off On On Off Off On

Notice that the Binary Coded Decimal format only allows decimal values to be specified. This means
that through using Binary Coded Decimal format it is impossible to retrieve a valid value if all inputs for
a specific port are turned on at the same time when using the InBCD instruction. The largest value
possible to be returned by InBCD is 99. In the table above it is easy to see that when 99 is the return
value for InBCD, all inputs are not on. In the case of a return value of 99, inputs 0, 3, 4, and 7 are On
and all the others are Off.

InBCD function cannot be used for the Wait command or wait condition of Till, Find, Sense.

F

InBCD Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 175

Notes
Difference between InBCD and In

The InBCD and In instructions are very similar in the SPEL+ language. However, there is one major
difference between the two. This difference is shown below:

- The InBCD instruction uses the Binary Coded Decimal format for specifying the return value
format for the 8 inputs. Since Binary Coded Decimal format precludes the values of &HA, &HB,
&HC, &HD, &HE or &HF from being used, all combinations for the 8 inputs cannot be satisfied.

- The In instruction works very similarly to the InBCD instruction except that In allows the return
value for all 8 inputs to be used. (i.e. 0 to 255 vs. 0 to 99 for InBCD) This allows all possible
combinations for the 8 bit input groups to be read.

See Also

In, MemOff, MemOn, MemOut, MemSw, Off, On, OpBCD, Oport, Out, Sw, Wait

InBCD Example
Some simple examples from the Command window are as follows:

Assume that inputs 0, 4, 10, 16, 17, and 18 are all On (The rest of the inputs are Off).

> Print InBCD(0)
11
> Print InBCD(1)
04
> Print InBCD(2)
07
>

Inertia Statement

176 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Inertia Statement

Specifies load inertia and eccentricity for current robot.

Syntax
Inertia [loadInertia], [eccentricity]
Inertia

Parameters
loadInertia Optional. Real expression that specifies total moment of inertia in kgm2 around the center

of the end effector joint, including end effector and part.
eccentricity Optional. Real expression that specifies eccentricity in mm around the center of the end

effector joint, including end effector and part.

Return Values
When parameters are omitted, the current Inertia parameters are displayed.

Description
Use the Inertia statement to specify the total moment of inertia for the load on the end effector joint.
This allows the system to more accurately compensate acceleration, deceleration, and servo gains for
end effector joint. You can also specify the distance from the center of end effector joint to the center
of gravity of the end effector and part using the eccentricity parameter.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
Inertia Function

Inertia Statement Example

Inertia 0.02, 1

>

Inertia Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 177

Inertia Function

Returns inertia parameter value.

Syntax
Inertia(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:
 0: Causes function to return “1” if robot supports inertia parameters or “0” if not.
 1: Causes function to return load inertia in kgm2.
 2: Causes function to return eccentricity in mm.

Return Values
Real value of the specified setting.

See Also
Inertia Statement

Inertia Function Example

Real loadInertia, eccentricity

loadInertia = Inertia(1)
eccentricity = Inertia(2)

F

InPos Function

178 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

InPos Function

Returns the position status of the specified robot.

Syntax
InPos

Return Values
True if position has been completed successfully, otherwise False.

See Also
CurPos, FindPos, WaitPos

InPos Function Example

Function main

 P0 = XY(0, -100, 0, 0)
 P1 = XY(0, 100, 0, 0)

 Xqt MonitorPosition
 Do
 Jump P0
 Wait .5
 Jump P1
 Wait .5
 Loop

Fend

Function MonitorPosition

 Boolean oldInPos, pos

 Do
 Pos = InPos
 If pos <> oldInPos Then
 Print "InPos = ", pos
 EndIf
 oldInPos = pos
 Loop

Fend

F

Input Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 179

Input Statement

Allows numeric data to be received from the keyboard and stored in a variable(s).

Syntax
Input varName [, varName, varName,...]

Parameters
varName Variable name. Multiple variables can be used with the Input command as long

as they are separated by commas.

Description
Input receives numeric data from the display device and assigns the data to the variable(s) used with
the Input instruction.

When executing the Input instruction, a “?” prompt appears at the display device. After inputting data
press the return key (Enter) on the keyboard.

Notes
Rules for Numeric Input

When inputting numeric values and non-numeric data is found in the input other than the delimiter
(comma), the Input instruction discards the non-numeric data and all data following that non-numeric
data.

Rules for String Input
When inputting strings, numeric and alpha characters are permitted as data.

Other Rules for the Input Instruction
- When more than one variable is specified in the instruction, the numeric data input intended for each

variable has to be separated by a comma (",") character.
- Numeric variable names and string variable names are allowed. However, the input data type must

match the variable type.

Potential Errors
Number of variables and input data differ

For multiple variables, the number of input data must match the number of Input variable names.
When the number of the variables specified in the instruction is different from the number of numeric
data received from the keyboard, an Error 2505 will occur.

See Also

Input #, Line Input, Line Input #, Print, String

> S

Input Statement

180 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Input Statement Example
This is a simple program example using Input statement.

Function InputNumbers
 Integer A, B, C

 Print "Please enter 1 number"
 Input A
 Print "Please enter 2 numbers separated by a comma"
 Input B, C
 Print "A = ", A
 Print "B = ", B, "C = ", C
Fend

A sample session of the above program running is shown below:
(Use the Run menu or F5 key to start the program)

Please enter 1 number
?-10000
Please enter 2 numbers separated by a comma
?25.1, -99
-10000
25.1 -99
B = 25.1 C = -99
>

Input # Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 181

Input # Statement

Allows string or numeric data to be received from a communications port or a device
and stored in a variable(s).

Syntax
Input PortNum, varName [, varName, varName,...]

Parameters
PortNum The communications handle or the device ID. Communication handles can be

specified in OpenCom (RS232) and OpenNet (TCP/IP) statements.
 Device ID integers are as follows.

21 RC+
23 OP
24 TP (TP1 only)

varName Variable name to receive the data.

Description
The Input # instruction receives numeric or string data from the device specified by PortNum, and
assigns the data to the variable(s).

Notes
Rules for Numeric Input

When inputting numeric values and non-numeric data is found in the input other than the delimiter
(comma), the Input instruction discards the non-numeric data and all data following that non-numeric
data.

Rules for String Input
When inputting strings, numeric and alpha characters are permitted as data.

Other Rules for the Input Instruction
- When more than one variable is specified in the instruction, the numeric data input intended for each

variable has to be separated by a comma (",") character.
- Numeric variable names and string variable names are allowed. However, the input data type must

match the variable type.

Potential Errors
Number of variables and input data differ

When the number of the variables specified in the instruction is different from the number of numeric
data received from the device, an Error 2505 will occur.

See Also

Input, Line Input, Line Input #

> S

Input # Statement

182 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Input # Statement Example
This is a simple program example using Input # statement.

Function GetData
 Integer A
 String B$

 OpenCom #1
 Print #1, "Send"
 Input #1, A 'Accept numeric data from port #1
 Input #1, B$ 'Get string data from port #1
 CloseCom #1
Fend

InputBox Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 183

InputBox Statement

Displays a prompt in a dialog box, waits for the operator to input text or choose a button,
and returns the contents of the box.

Syntax
InputBox prompt, title, default, data$

Parameters
prompt String expression displayed as a message in the dialog box.
title String expression displayed in the title bar of the dialog box.
default String expression displayed in the text box as the default response. If no default is

desired, use an empty string ("").
data$ A string variable which will contain what the operator entered. If the operator clicks

Cancel, this string will be "@".

Description

InputBox displays the dialog and waits for the operator to click OK or Cancel. Data is a string that
contains what the operator typed in.

See Also
MsgBox

InputBox Statement Example
This function shows an InputBox example.

Function GetPartName$ As String
 String prompt$, title$, data$

 prompt$ = "Enter part name:"
 title$ = "Sample Application"
 InputBox prompt$, title$, "", data$
 If data$ <> "@" Then
 GetPartName$ = data$
 EndIf
Fend

The following picture shows the example output from the InputBox example code shown above.

S

InReal Function

184 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

InReal Function

Returns the input data of 2 words (32 bits) as the floating-point data (IEEE754 compliant)
of 32 bits.

Syntax
InReal(WordPortNumber)

Parameter
WordPortNumber Integer expression representing the I/O Input Word.

Return Values

Returns the input port status in Real type number.

Description
From the input word port specified by the word port number, retrieve the 2 input word values as
IEEE754 Real type value. Input word label can be used for the word port number parameter.
InReal Function cannot be used for the Wait command, or the condition of Till, Find, Sense.

See Also

In, InW, InBCD, Out, OutW, OpBCD, OutReal

InW Function Example

Real realVal

realVal = InReal(0)

F

InsideBox Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 185

InsideBox Function

Returns the check status of the approach check area.

Syntax
InsideBox(AreaNum)

Parameters
AreaNum Integer expression from 1 to 15 representing which approach check area to

return status for.

Return Values
True if the robot end effector approaches the specified approach check area, otherwise False.

See Also
Box, BoxClr, BoxDef, InsidePlane

InsideBox Function Example

This is an example to start up different task from Main function and display the approach check status.

Function Main
 :
 :
 Xqt PrintInsideBox
 :
 :
Fend

Function PrintInsideBox
 Do
 Wait InsideBox(1) = True
 Print “Inside Box1”
 Wait InsideBox(1) = False
 Print “Outside Box1”
 Loop
Fend

This is a program example to parallel process the motion command. I/O turns ON when the robot
approaches the specific approach check area at running.

Function Main
 Motor On
 Power High
 Speed 30; Accel 30, 30

 Go P1 !D0; Wait InsideBox(1) = True; On 1!

Fend

Notes
Do not exclude D0 in this program.

F

InsidePlane Function

186 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

InsidePlane Function

Returns the check status of the approach check plane.

Syntax
InsidePlane(PlaneNum)

Parameters
PlaneNum Integer expression from 1 to 15 representing which approach check plane to

return status for.

Return Values
True if the robot end effector approaches the specified approach check plane, otherwise False.

See Also
InsideBox, Plane, PlaneClr, PlaneDef

InsidePlane Function Example

This is an example to start up different task from Main function and display the approach check status.

Function Main
 :
 :
 Xqt PrintInsidePlane
 :
 :
Fend

Function PrintInsidePlane
 Do
 Wait InsidePlane(1) = True
 Print “Inside Plane1”
 Wait InsidePlane(1) = False
 Print “Outside Plane1”
 Loop
Fend

This is a program example to parallel process the motion command. I/O turns ON when the robot
comes through the specific approach check plane at running.

Function Main
 Motor On
 Power High
 Speed 30; Accel 30, 30

 Go P1 !D0; Wait InsidePlane(1) = True; On 1!

Fend

Notes
Do not exclude D0 in this program.

F

InStr Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 187

InStr Function

Returns position of one string within another.

Syntax
InStr(string, searchString)

Parameters
string String expression to be searched.
searchString String expression to be searched for within string.

Return Values
Returns the position of the search string if the location is found, otherwise -1.

See Also
Mid$

Instr Function Example

Integer pos

pos = InStr("abc", "b")

F

Int Function

188 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Int Function

Converts a Real number to Integer. Returns the largest integer that is less than or equal to the
specified value.

Syntax
Int(number)

Parameters
number A real number expression.

Return Values
Returns an Integer value of the real number used in number.

Description
Int(number) takes the value of number and returns the largest integer that is less than or equal to
number.

Note
For Values Less than 1 (Negative Numbers)

If the parameter number has a value of less than 1 then the return value have a larger absolute value
than number. (For example, if number = -1.35 then -2 will be returned.)

See Also

Abs, Atan, Atan2, Cos, Mod, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Int Function Example
Some simple examples from the Command window are as follows:

> Print Int(5.1)
5
> Print Int(0.2)
0
> Print Int(-5.1)
-6
>

F

Integer Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 189

Integer Statement

Declares variables of type Integer. (2 byte whole number).

Syntax
Integer varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type integer.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 to the upper

bound value.
 The total available number of array elements for local and global preserve

variables is 1000.
 The total available number of array elements for global and module variables is

10000.
 To calculate the total elements used in an array, use the following formula. (If a

dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)

Description

Integer is used to declare variables as type integer. Variables of type integer can contain whole
numbers with values from -32768 to 32767. Local variables should be declared at the top of a
function. Global and module variables must be declared outside of functions.

See Also
Boolean, Byte, Double, Global, Long, Real, String

Integer Statement Example
The following example shows a simple program that declares some variables using Integer.

Function inttest
 Integer A(10) 'Single dimension array of integer
 Integer B(10, 10) 'Two dimension array of integer
 Integer C(5, 5, 5) 'Three dimension array of integer
 Integer var1, arrayvar(10)
 Integer i
 Print "Please enter an Integer Number"
 Input var1
 Print "The Integer variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter an Integer Number"
 Input arrayvar(i)
 Print "Value Entered was ", arrayvar(i)
 Next I
Fend

S

InW Function

190 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

InW Function

Returns the status of the specified input word port. Each word port contains 16 input bits.

Syntax
InW(WordPortNum)

Parameters
WordPortNum Integer expression representing the I/O Input Word.

Return Values
Returns the current status of inputs (long integers from 0 to 65535).

See Also
In, Out, OutW

InW Function Example

Long word0

word0 = InW(0)

F

IOLabel$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 191

IOLabel$ Function

Returns the I/O label for a specified input or output bit, byte, or word.

Syntax
IOLabel$(IOType, IOWidth, portNumber)

Parameters
IOType Integer expression representing the type of I/O.

0 - Input
1 - Output
2 - Memory

IOWidth Integer expression representing the width of the port: 1(bit), 8 (byte), or 16 (word).
portNumber Integer expression representing the bit, byte, or word port number to return the label for.

Return Values
String containing the label.

See Also
PLabel$, IONumber

IOLabel$ Function Example

Integer i

For i = 0 To 15
 Print "Input ", i, ": ", IOLabel$(0, 1, i)
Next i

F

IONumber Function

192 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

IONumber Function

Returns the I/O number of the specified I/O label.

Syntax
IONumber(IOlabel)

Parameters
IOlabel String expression that specifies the standard I/O or memory I/O label.

Return Values
Returns the I/O port number (bit, byte, word) of the specified I/O label. If there is no such I/O label, an
error will be generated.

See Also
IOLabel$

IONumber Function Example

Integer IObit

IObit = IONumber("myIO")

IObit = IONUmber("Station" + Str$(station) + "InCycle")

F

J1Flag Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 193

J1Flag Statement

Specifies the J1Flag attribute of a point.

Syntax
(1) J1Flag point, [value]
(2) J1Flag

Parameters
point Pnumber or P(expr) or point label.
value Optional. Integer expression.

0 (/J1F0) J1 range is -90 to +270 degrees
 1 (/J1F1) J1 range is from -270 to -90 or +270 to +450 degrees

Return Values
The J1Flag attribute specifies the range of values for joint 1 for one point. If value is ommited, the
J1Flag value for the specified point is displayed. When both parameters are omitted, the J1Flag value
is displayed for the current robot position.

See Also
Hand, J1Flag Function, J2Flag

J1Flag Statement Example

J1Flag P0, 1
J1Flag P(mypoint), 0

> S

J1Flag Function

194 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

J1Flag Function

Returns the J1Flag attribute of a point.

Syntax
J1Flag [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the J1Flag setting of the current

robot position is returned.

Return Values
0 /J1F0
1 /J1F1

See Also
Hand, J1Flag Statement, J2Flag

J1Flag Function Example

Print J1Flag(pick)
Print J1Flag(P1)
Print J1Flag
Print J1Flag(Pallet(1, 1))

F

J2Flag Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 195

J2Flag Statement

Sets the J2Flag attribute of a point.

Syntax
(1) J2Flag point, [value]
(2) J2Flag

Parameters
point Pnumber or P(expr) or point label.
value Optional. Integer expression.

0 (/J2F0) J2 range is -180 to +180 degrees
 1 (/J2F1) J2 range is from -360 to -180 or +180 to +360 degrees

Return Values

The J2Flag attribute specifies the range of values for joint 2 for one point. If value is ommited, the
J2Flag value for the specified point is displayed. When both parameters are omitted, the J2Flag value
is displayed for the current robot position.

See Also
Hand, J1Flag, J2Flag Function

J2Flag Statement Example

J2Flag P0, 1
J2Flag P(mypoint), 0

> S

J2Flag Function

196 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

J2Flag Function

Returns the J2Flag attribute of a point.

Syntax
J2Flag [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the J2Flag setting of the current

robot position is returned.

Return Values
0 /J2F0
1 /J2F1

See Also
Hand, J1Flag, J2Flag Statement

J2Flag Function Example

Print J2Flag(pick)
Print J2Flag(P1)
Print J2Flag
Print J2Flag(P1 + P2)

F

J4Flag Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 197

J4Flag Statement

Sets the J4Flag attribute of a point.

Syntax
(1) J4Flag point, [value]
(2) J4Flag

Parameters
point Pnumber or P(expr) or point label.
value Optional. Integer expression.

0 (/J4F0) J4 range is -180 to +180 degrees
 1 (/J4F1) J4 range is from -360 to -180 or +180 to +360 degrees

Return Values
The J4Flag attribute specifies the range of values for joint 4 for one point. If value is ommited, the
J4Flag value for the specified point is displayed. When both parameters are omitted, the J4Flag value
is displayed for the current robot position.

See Also
Elbow, Hand, J4Flag Function, J6Flag, Wrist

J4Flag Statement Example

J4Flag P0, 1
J4Flag P(mypoint), 0

> S

J4Flag Function

198 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

J4Flag Function

Returns the J4Flag attribute of a point.

Syntax
J4Flag [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the J4Flag setting of the current

robot position is returned.

Return Values
0 /J4F0
1 /J4F1

See Also
Elbow, Hand, Wrist, J4Flag Statement, J6Flag

J4Flag Function Example

Print J4Flag(pick)
Print J4Flag(P1)
Print J4Flag
Print J4Flag(Pallet(1, 1))

F

J6Flag Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 199

J6Flag Statement

Sets the J6Flag attribute of a point.

Syntax
(1) J6Flag point, [value]
(2) J6Flag

Parameters
point Pnumber or P(expr) or point label.
value Integer expression. Range is 0 - 127 (/J6F0 to /J6F127). J6 range for the specified point

is as follows:
 (-180 * (value+1) < J6 <= 180 * value) and (180 * value < J6 <= 180 * (value+1))

Return Values
The J6Flag attribute specifies the range of values for joint 6 for one point. If value is ommited, the
J6Flag value for the specified point is displayed. When both parameters are omitted, the J6Flag value
is displayed for the current robot position.

See Also
Elbow, Hand, J4Flag, J6Flag Function, Wrist

J6Flag Statement Example

J6Flag P0, 1
J6Flag P(mypoint), 0

>

S

J6Flag Function

200 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

J6Flag Function

Returns the J6Flag attribute of a point.

Syntax
J6Flag [(point)]

Parameters
point Optional. Point expression. If point is omitted, then the J6Flag setting of the current

robot position is returned.

Return Values
0 to 127 /J6F0 to /J6F127

See Also
Elbow, Hand, Wrist, J4Flag, J6Flag Statement

J6Flag Function Example

Print J6Flag(pick)
Print J6Flag(P1)
Print J6Flag
Print J6Flag(P1 + P2)

F

JA Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 201

JA Function

Returns a robot point specified in joint angles.

Syntax
JA(j1, j2, j3, j4, [j5], [j6])

Parameters
j1 - j6 Real expressions representing joint angles.

Return Values
A robot point whose location is determined by the specified joint angles.

Description
Use JA to specify a robot point using joint angles.

When the points returned from JA function specify a singularity of the robot, the joint angles of the robot
do not always agree with the joint angles supplied to the JA function as arguments during the execution of
a motion command for the points. To operate the robot using the joint angles specified for the JA function,
avoid a singularity of the robot.

For example:

> go ja(0,0,0,90,0,-90)
> where
WORLD: X: 0.000 mm Y: 655.000 mm Z: 675.000 mm U: 0.000 deg V: -90.000 deg W: -90.000 deg
JOINT: 1: 0.000 deg 2: 0.000 deg 3: 0.000 deg 4: 0.000 deg 5: 0.000 deg 6: 0.000 deg
PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 0 pls 5: 0 pls 6: 0 pls

> go ja(0,0,0,90,0.001,-90)
> where
WORLD: X: -0.004 mm Y: 655.000 mm Z: 675.000 mm U: 0.000 deg V: -90.000 deg W: -89.999 deg
JOINT: 1: 0.000 deg 2: 0.000 deg 3: 0.000 deg 4: 90.000 deg 5: 0.001 deg 6: -90.000 deg
PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 2621440 pls 5: 29 pls 6: -1638400 pls

See Also

AglToPls, XY

JA Function Example

P10 = JA(60, 30, -50, 45)
Go JA(135, 90, -50, 90)
P3 = JA(0, 0, 0, 0, 0, 0)

F

Joint Statement

202 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Joint Statement

Displays the current position for the robot in joint coordinates.

Syntax
Joint

See Also
Pulse, Where

Joint Statement Example

>joint
JOINT: 1: -6.905 deg 2: 23.437 deg 3: -1.999 mm 4: -16.529 deg
>

>

JRange Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 203

JRange Statement

Defines the permissible working range of the specified joint in pulses.

Syntax
JRange jointNumber, lowerLimit, upperLmit

Parameters
jointNumber Integer expression from 1 to 6 representing the joint for which JRange will be specified.
lowerLmit Long integer expression representing the encoder pulse count position for the lower

limit range of the specified joint.
upperLmit Long Integer expression representing the encoder pulse count position for the upper

limit range of the specified joint.

Description
Defines the permissible working range for the specified joint with upper and lower limits in encoder
pulse counts. JRange is similar to the Range command. However, the Range command requires that
all joint range limits be set while the JRange command can be used to set each joint working limits
individually thus reducing the number of parameters required. To confirm the defined working range,
use the Range command.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Notes
Lower Limits Must Not Exceed Upper Limits:

The Lower limit defined in the JRange command must not exceed the Upper limit. A lower limit in
excess of the Upper limit will cause an error, making it impossible to execute a motion command.

Factors Which can Change JRange:
Once JRange values are set they remain in place until the user modifies the values either by the
Range or JRange commands. Turning controller power off will not change the JRange joint limit
values.

Maximum and Minimum Working Ranges:
Refer to the specifications in the Robot manual for maximum working ranges for each robot model
since these vary from model to model.

See Also

Range, JRange Function

JRange Statement Example
The following examples are done from the Command window:

> JRange 2, -6000, 7000 'Define the 2nd joint range

> JRange 1, 0, 7000 'Define the 1st joint range

> S

JRange Function

204 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

JRange Function

Returns the permissible working range of the specified joint in pulses.

Syntax
JRange(jointNumber, paramNumber)

Parameters
jointNumber Specifies reference joint number (integer from 1 to 6) by an expression or

numeric value.
paramNumber Integer expression containing one of two values:
 1: Specifies lower limit value.
 2: Specifies upper limit value.

Return Values
Range setting (integer value, pulses) of the specified joint.

See Also
Range, JRange Statement

JRange Function Example

Long i, oldRanges(3, 1)

For i = 0 To 3
 oldRanges(i, 0) = JRange(i + 1, 1)
 oldRanges(i, 1) = JRange(i + 1, 2)
Next i

F

JS Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 205

JS Function

Jump Sense detects whether the arm stopped prior to completing a Jump, Jump3, or Jump3CP
instruction which used a Sense input or if the arm completed the move.

Syntax
JS

Return Values
Returns a True or a False.

True : When the arm was stopped prior to reaching its target destination because a Sense
Input condition was met JS returns a True.

False : When the arm completes the normal move and reaches the target destination as
defined in the Jump instruction JS returns a False.

Description

JS is used in conjunction with the Jump and Sense instructions. The purpose of the JS instruction is to
provide a status result as to whether an input condition (as defined by the Sense instruction) is met
during motion caused by the Jump instruction or not. When the input condition is met, JS returns a
True. When the input condition is not met and the arm reaches the target position, JS returns a False.

JS is simply a status check instruction and does not cause motion or specify which Input to check
during motion. The Jump instruction is used to initiate motion and the Sense instruction is used to
specify which Input (if any) to check during Jump initiated motion.

Note
JS Works only with the Most Recent Jump, Jump3, Jump3CP Instruction:

JS can only be used to check the most recent Jump instruction's input check (which is initiated by the
Sense instruction.) Once a 2nd Jump instruction is initiated, the JS instruction can only return the
status for the 2nd Jump instruction. The JS status for the first Jump is gone forever. So be sure to
always do any JS status check for Jump instructions immediately following the Jump instruction to be
checked.

See Also

JT, Jump, Jump3, Jump3CP, Sense

JS Function Example

Function SearchSensor As Boolean
 Sense Sw(5) = On

 Jump P0
 Jump P1 Sense
 If JS = TRUE Then
 Print "Sensor was found"
 SearchSensor = TRUE
 EndIf
Fend

F

JT Function

206 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

JT Function

Returns the status of the most recent Jump, Jump3, or Jump3CP instruction for the current
robot.

Syntax
JT

Return Values
JT returns a long with the following bits set or clear:

Bit 0 Set to 1 when rising motion has started or rising distance is 0.
Bit 1 Set to 1 when horizontal motion has started or horizontal distance is 0.
Bit 2 Set to 1 when descent motion has started or descent distance is 0.
Bit 16 Set to 1 when rising motion has completed or rising distance is 0.
Bit 17 Set to 1 when horizontal motion has completed or horizontal distance is 0.
Bit 18 Set to 1 when descent motion has completed or descent distance is 0.

Description
Use JT to determine the status of the most recent Jump command that was stopped before
completion by Sense, Till, abort, etc.

See Also
JS, Jump, Jump3, Jump3CP, Sense, Till

JT Function Example

Function SearchTill As Boolean

 Till Sw(5) = On

 Jump P0
 Jump P1 Till
 If JT And 4 Then
 Print "Motion stopped during descent"
 SearchTill = TRUE
 EndIf
Fend

F

JTran Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 207

JTran Statement

Perform a relative move of one joint.

Syntax
JTran jointNumber, distance

Parameters
jointNumber Integer expression representing which joint to move.
distance Real expression representing the distance to move in degrees for rotational joints

or millimeters for linear joints.

Description
Use JTran to move one joint a specified distance from the current position.

See Also
Go, Jump, Move, Ptran

JTran Statement Example

JTran 1, 20

S

Jump Statement

208 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Jump Statement

Moves the arm from the current position to the specified destination point using
point to point motion by first moving in a vertical direction up, then horizontally and then
finally vertically downward to arrive on the final destination point.

Syntax
Jump destination [CarchNumber] [LimZ zLimit] [CP] [searchExpr] [!...!]

Parameters
destination The target destination of the motion using a point expression.
archNumber Optional. The arch number (archNumber) specifies which Arch Table entry to use for

the Arch type motion caused by the Jump instruction. archNumber must always be
proceeded by the letter C. (Valid entries are from C0 to C7.)

zLimit Optional. This is a Z limit value which represents the maximum position the Z joint
will travel to during the Jump motion. This can be thought of as the Z Height Ceiling
for the Jump instruction. Any valid Z joint Coordinate value is acceptable.

CP Optional. Specifies continuous path motion.
searchExpr Optional. A Sense, Till or Find expression.

Sense | Till | Find
Sense Sw(expr) = {On | Off}
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to the Jump instruction to
cause I/O and other commands to execute during motion.

Description

Jump moves the arm from the current position to destination using what is called Arch Motion. Jump
can be thought of as 3 motions in 1. For example, when the Arch table entry defined by archNumber is
7, the following 3 motions will occur.

1) The move begins with only Z-joint motion until it reaches the Z joint height calculated by the
Arch number used for the Jump command.

2) Next the arm moves horizontally (while still moving upward in Z) towards the target point
position until the upper Z Limit (defined by LimZ) is reached. Then the arm begins to move
downward in the Z direction (while continuing X, Y and U joint motion) until the final X, and Y
and U joint positions are reached.

3) The Jump instruction is then completed by moving the arm down with only Z-joint motion until
the target Z-joint position is reached.

The coordinates of destination (the target position for the move) must be taught previously before
executing the Jump instruction. The coordinates cannot be specified in the Jump instruction itself.
Acceleration and deceleration for the Jump is controlled by the Accel instruction. Speed for the move
is controlled by the Speed instruction.

archNumber Details
The Arch for the Jump instruction can be modified based on the archNumber value optionally
specified with the Jump instruction. This allows the user to define how much Z to move before
beginning the X, Y, and U joint motion. (This allows the user to move the arm up and out of the way of
parts, feeders and other objects before beginning horizontal motion.) Valid archNumber entries for the
Jump instruction are between C0 and C7. The Arch table entries for C0 to C6 are user definable with
the Arch instruction. However, C7 is a special Arch entry which always defines what is called Gate
Motion. Gate Motion means that the robot first moves Z all the way to the coordinate defined by LimZ
before beginning any X, Y, or U joint motion. Once the LimZ Z limit is reached, X, Y and U joint motion
begins. After the X, Y, and U joints each reaches its final destination position, then the Z joint can
begin moving downward towards the final Z joint coordinate position as defined by destination (the
target point). Gate Motion looks as follows:

> S

Jump Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 209

Origin Pt.

Destination Pt.
Pend

LIMZ

LimZ Details
LimZ zLimit specifies the upper Z coordinate value for the horizontal movement plane in the current
local coordinate system. The specified arch settings can cause the X, Y, and U joints to begin
movement before reaching LimZ, but LimZ is always the maximum Z height for the move. When the
LimZ optional parameter is omitted, the previous value specified by the LimZ instruction is used for the
horizontal movement plane definition.

It is important to note that the LimZ zLimit height limit specification is the Z value for the local robot
coordinate system. It is not the Z value for Arm or Tool. Therefore take the necessary precautions
when using tools or hands with different operating heights.

Sense Details
The Sense optional parameter allows the user to check for an input condition or memory I/O condition
before beginning the final Z motion downward. If satisfied, this command completes with the robot
stopped above the target position where only Z motion is required to reach the target position. It is
important to note that the robot arm does not stop immediately upon sensing the Sense input modifier.

The JS or Stat commands can then be used to verify whether the Sense condition was satisfied and
the robot stopped prior to its target position or that the Sense condition was not satisfied and the robot
continued until stopping at its target position.

Till Details
The optional Till qualifier allows the user to specify a condition to cause the robot to decelerate to a
stop prior to completing the Jump. The condition specified is simply a check against one of the I/O
inputs or one of the memory I/O. This is accomplished through using either the Sw or MemSw
function. The user can check if the input is On or Off and cause the arm to decelerate and stop based
on the condition specified.

The Stat function can be used to verify whether the Till condition has been satisfied and this command
has been completed, or the Till condition has not been satisfied and the robot stopped at the target
position.

Jump Statement

210 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Notes
Jump cannot be executed for 6-axis robots

Use Jump3 or Jump3CP for 6-axis robots.
Jump Motion trajectory changes depending on motion and speed

Jump motion trajectory is comprised of vertical motion and horizontal motion. It is not a continuous
path trajectory. The actual Jump trajectory of arch motion is not determined by Arch parameters alone.
It also depends on motion and speed.

Always use care when optimizing Jump trajectory in your applications. Execute Jump with the desired
motion and speed to verify the actual trajectory.

When speed is lower, the trajectory will be lower. If Jump is executed with high speed to verify an
arch motion trajectory, the end effector may crash into an obstacle with lower speed.

In a Jump trajectory, the depart distance increases and the approach distance decreases when the
motion speed is set high. When the fall distance of the trajectory is shorter than the expected, lower
the speed and/or the deceleration, or change the fall distance to be larger.

Even if Jump commands with the same distance and speed are executed, the trajectory is affected by
motion of the robot arms. As a general example, for a SCARA robot the vertical upward distance
increases and the vertical downward distance decreases when the movement of the first arm is large.
When the vertical fall distance decreases and the trajectory is shorter than the expected, lower the
speed and/or the deceleration, or change the fall distance to be larger.

Omitting archNumber Parameter
If the archnum optional parameter is omitted, the default Arch entry for use with the Jump instruction is
C7. This will cause Gate Motion, as described above.

Difference between Jump and Jump3, Jump3CP
The Jump3 and Jump3CP instructions can be used for 6-axis robots. On the other hand the Jump
instruction cannot be used for 6-axis robots. For SCARA robots (including RS series), using the Jump
instruction shortens the joint motion time for depart and approach motion. The depart and approach
motions in Jump3 can be executed along the Z axis and in other directions.

Difference between Jump and Go
The Go instruction is similar to Jump in that they both cause Point to Point type motion, however there
are many differences. The most important difference is that the Go instruction simply causes Point to
Point motion where all joints start and stop at the same time (they are synchronized). Jump is different
since it causes vertical Z movement at the beginning and end of the move. Jump is ideal for pick and
place type applications.

Decelerating to a Stop With the Jump Instruction
The Jump instruction always causes the arm to decelerate to a stop prior to reaching the destination
point.

Proper Speed and Acceleration Instructions with Jump:
The Speed and Accel instructions are used to specify the speed and acceleration of the robot during
Jump motion. Pay close attention to the fact that Speed and Accel apply to point to point type motion
(Go, Jump, Etc.). while linear and circular interpolated motion instructions such as Move or Arc use the
SpeedS and AccelS instructions. For the Jump instruction, it is possible to separately specify speeds
and accelerations for Z joint upward motion, horizontal travel including U joint rotation, and Z joint
downward motion.

Jump Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 211

Pass function of Jump
When the CP parameter is specified for Jump with 0 downward motion, the Jump horizontal travel
does not decelerate to a stop but goes on smoothly to the next PTP motion.
When the CP parameter is specified for a PTP motion command right before a Jump with 0 upward
motion, the PTP motion does not decelerate to a stop but connects smoothly with the Jump horizontal
travel.
This is useful when you want to replace the horizontal travel of Jump (a PTP motion) with several PTP
motions.
(Example)

Go P1
Jump P2 :Z(-50) C0 LimZ -50 CP
Go P3 :Z(0) CP
Jump P4 C0 LimZ 0

Potential Errors
LimZ Value Not High Enough

When the current arm position of the Z joint is higher than the value set for LimZ and a Jump
instruction is attempted, an Error 4005 will occur.

See Also

Accel, Arc, Arch, Go, JS, JT, LimZ, Point Expression, Pulse, Sense, Speed, Stat, Till

Jump Statement Example

The example shown below shows a simple point to point move between points P0 and P1 and then
moves back to P0 using the Jump instruction. Later in the program the arm moves using the Jump
instruction. If input #4 never goes high then the arm starts the approach motion and moves to P1. If
input #4 goes high then the arm does not execute the approach motion.

Function jumptest
 Home
 Go P0
 Go P1
 Sense Sw(4) = On
 Jump P0 LimZ -10
 Jump P1 LimZ -10 Sense 'Check input #4
 If Js(0) = 1 Then
 Print "Input #4 came on during the move and"
 Print "the robot stopped prior to arriving on"
 Print "point P1."
 Else
 Print "The move to P1 completed successfully."
 Print "Input #4 never came on during the move."
 EndIf
Fend

> Jump P10+X50 C0 LimZ-20 Sense !D50;On 0;D80;On 1!

P2

P1

P3

P4

Jump3, Jump3CP Statements

212 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Jump3, Jump3CP Statements

3D gate motion. Jump3 is a combination of two CP motions and one PTP motion.
Jump3CP is a combination of three CP motions.

Syntax
(1) Jump3 depart, approach, destination [CarchNumber] [CP] [LJM [orientationFlag]] [searchExpr]

[!...!]
(2) Jump3CP depart, approach, destination [ROT] [CarchNumber] [CP] [LJM [orientationFlag]]

[searchExpr] [!...!]

Parameters
depart The departure point above the current position using a point expression.
approach The approach point above the destination position a point expression.
destination The target destination of the motion using a point expression.
ROT Optional. :Decides the speed/acceleration/deceleration in favor of tool rotation.
archNumber Optional. The arch number (archNumber) specifies which Arch Table entry to use for

the Arch type motion caused by the Jump instruction. archNumber must always be
proceeded by the letter C. (Valid entries are C0 to C7.)

CP Optional. Specifies continuous path motion.
LJM Optional. Convert the target destination using LJM function.
orientationFlag Optional. Specifies a parameter that selects an orientation flag for LJM function.
searchExpr Optional. A Sense, Till or Find expression.

Sense | Till | Find
Sense Sw(expr) = {On | Off}
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to the Jump instruction to
cause I/O and other commands to execute during motion.

Description

Moves the arm from the current position to the destination point with 3D gate motion. 3D gate motion
consists of depart motion, span motion, and approach motion. The depart motion form the current
position to the depart point is always CP motion. The span motion from the depart point to the start
approach point is PTP motion in Jump3, and the CP motion in Jump3CP.
The approach motion from the starting approach point to the target point is always CP motion.

Span motion
PTP/CP

Depart
motion
CP

Current position

Destination point

Depart point

Approach point

Approach motion
CP

> S

Jump3, Jump3CP Statements

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 213

Arch motion is achieved by specifying the arch number. The arch motion for Jump3, Jump3CP is as
shown in the figure below. For arch motion to occur, the Depart distance must be greater than the
arch upward distance and the Approach distance must be greater than the arch downward distance.

Depart point

ARCH Upward

ARCH downward
Approach distance

Depart distance

 Start approach point

Jump3CP uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to
Using Jump3CP with CP below on the relation between the speed/acceleration and the
acceleration/deceleration. If, however, the ROT modifier parameter is used, Jump3CP uses the
SpeedR speed value and AccelR acceleration and deceleration values. In this case SpeedS speed
value and AccelS acceleration and deceleration value have no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur.
However, by using the ROT parameter and giving priority to the acceleration and the deceleration of
the tool rotation, it is possible to move without an error. When there is not an orientational change with
the ROT modifier parameter and movement distance is not 0, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed
exceeds the specified speed of the manipulator, an error will occur. In this case, please reduce the
speed or append the ROT modifier parameter to give priority to the rotational
speed/acceleration/deceleration.

Notes
Jump3 span motion is PTP (point to point)

It is difficult to predict Jump3 span motion trajectory. Therefore, be careful that the robot doesn't
collide with peripheral equipment and that robot arms don’t collide with the robot.

Jump3 Motion trajectory changes depending on motion and speed
Jump3 motion trajectory is comprised of depart, span, and approach motions. It is not a continuous
path trajectory. The actual Jump3 trajectory of arch motion is not determined by Arch parameters
alone. It also depends on motion and speed.

Always use care when optimizing Jump3 trajectory in your applications. Execute Jump3 with the
desired motion and speed to verify the actual trajectory.

When speed is lower, the trajectory will be lower. If Jump3 is executed with high speed to verify an
arch motion trajectory, the end effector may crash into an obstacle with lower speed.

In a Jump3 trajectory, the depart distance increases and the approach distance decreases when the
motion speed is set high. When the approach distance of the trajectory is shorter than the expected,
lower the speed and/or the deceleration, or change the approach distance to be larger.

Jump3, Jump3CP Statements

214 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Even if Jump commands with the same distance and speed are executed, the trajectory is affected by
motion of the robot arms. As a general example, for a SCARA robot the depart distance increases
and the approach distance decreases when the movement of the first arm is large. When the
approach distance decreases and the trajectory is shorter than the expected, lower the speed and/or
the deceleration, or change the approach distance to be larger.

LimZ does not affect Jump3 and Jump3CP
LimZ has no affect on Jump3 or Jump3CP since the span motion is not necessarily perpendicular to
the Z axis of the coordinate system.

Potential acceleration errors
An acceleration error may occur during an arch motion execution by the Jump3 andJump3CP
commands. This error is issued frequently when the majority of the motion during depart or approach
uses the same joint as the span motion. To avoid this error, reduce the acceleration/deceleration
speed of the span motion using Accel command for Jump3 or using AccelS command for Jump3CP.
Depending on the motion and orientation of the robot, it may also help to reduce the acceleration and
deceleration of the depart motion (approach motion) using the AccelS command.

Using Jump3, Jump3CP with CP
The CP parameter causes the arm to move to destination without decelerating or stopping at the point
defined by destination. This is done to allow the user to string a series of motion instructions together
to cause the arm to move along a continuous path while maintaining a specified speed throughout all
the motion. The Jump3 and Jump3CP instructions without CP always cause the arm to decelerate to
a stop prior to reaching the point desination.

Pass function of Jump3
When the CP parameter is specified for Jump3 with 0 approach motion, the Jump3 span motion does
not decelerate to a stop but goes on smoothly to the next PTP motion.
When the CP parameter is specified for a PTP motion command right before Jump3 with 0 depart
motion, the PTP motion does not decelerate to a stop but connects smoothly with the Jump3 span
motion.
This is useful when you want to replace the span motion of Jump3 (a PTP motion) with several PTP
motions.

Pass function of Jump3CP
When the CP parameter is specified for Jump3CP with 0 approach motion, the Jump3CP span motion
does not decelerate to a stop but goes on smoothly to the next CP motion.
When the CP parameter is specified for a CP motion command right before Jump3CP with 0 depart
motion, the CP motion does not decelerate to a stop but connects smoothly with the Jump3CP span
motion.
This is useful when you want to replace the span motion of Jump3CP (a CP motion) with several CP
motions.
 (Example 1)

Jump3 P1,P2,P2 CP
Go P3,P4 CP
Jump3 P4,P5,P5+tlz(50)

(Example 2)

Jump3CP P1,P2,P2 CP
Move P3,P4 CP
Jump3CP P4,P5,P5+tlz(50)

 P2
P1

P3

P4

P5

End Start

Jump3, Jump3CP Statements

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 215

Use Jump3, Jump3CP with LJM
With LJM parameter, the program using LJM function can be more simple.
For ecample, the following four-line program

P11 = LJM(P1, Here, 2)
P12 = LJM(P2, P11, 2)
P13 = LJM(P3, P12, 2)
Jump3 P11, P12, P13

can be… the one-line program.
 Jump3 P1, P2, P3 LJM 2
LJM parameter is available for 6-axis and RS series robots.
Jump3CP span motion is straight line (CP) motion and it cannot switch the wrist orientation along the
way. Therefore, do not use the orientationFlag (LJM 1) of LJM function which is able to switch the
wrist orientation.

See Also

Accel, Arc, Arch, Go, JS, JT, Point Expression, Pulse, Sense, Speed, Stat, Till

Jump3 Statement Example

' 6 axis robot motion which works like Jump of SCARA robot
Jump3 Here :Z(100), P3 :Z(100), P3

' Depart and approach use Z tool coordinates
Jump3 Here -TLZ(100), P3 -TLZ(100), P3

' Depart uses base Z and approach uses tool Z
Jump3 Here +Z(100), P3 -TLZ(100), P3

' Example for the depart motion from P1 in Tool 1 and the approach
motion to P3 in Tool 2

Arch 0,20,20
Tool 1
Go P1

P2 = P1 -TLZ(100)
Tool 2
Jump3 P2, P3-TLZ(100), P3 C0

LCase$ Function

216 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

LCase$ Function

Returns a string that has been converted to lowercase.

Syntax
LCase$(string)

Parameters
string A valid string expression.

Return Values
The converted lower case string.

See Also
LTrim$, Trim$, RTrim$, UCase$

LCase$ Function Example

str$ = "Data"
str$ = LCase$(str$) ' str$ = "data"

F

Left$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 217

Left$ Function

Returns a substring from the left side of a string expression.

Syntax
Left$(string, count)

Parameters
string String expression from which the leftmost characters are copied.
count The number of characters to copy from string starting with the leftmost character.

Return Values
Returns a string of the leftmost number characters from the character string specified by the user.

Description
Left$ returns the leftmost number characters of a string specified by the user. Left$ can return up to
as many characters as are in the character string.

See Also
Asc, Chr$, InStr, Len, Mid$, Right$, Space$, Str$, Val

Left$ Function Example
The example shown below shows a program which takes a part data string as its input and parses out
the part number, part name, and part count.

Function ParsePartData(DataIn$ As String, ByRef PartNum$ As String,
ByRef PartName$ As String, ByRef PartCount As Integer)

 Integer pos
 String temp$

 pos = Instr(DataIn$, ",")
 PartNum$ = Left$(DataIn$, pos - 1)

 DataIn$ = Right$(datain$, Len(DataIn$) - pos)
 pos = Instr(DataIn$, ",")

 PartName$ = Left$(DataIn$, pos - 1)

 PartCount = Val(Right$(datain$, Len(DataIn$) - pos))

Fend

Some other example results from the Left$ instruction from the Command window.

> Print Left$("ABCDEFG", 2)
 AB

> Print Left$("ABC", 3)
 ABC

F

Len Function

218 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Len Function

Returns the number of characters in a character string.

Syntax
Len(string)

Parameters
string String expression.

Return Values
Returns an integer number representing the number of characters in the string string which was given
as an argument to the Len instruction.

Description
Len returns an integer number representing the number of characters in a string specified by the user.
Len will return values between 0 and 255 (since a string can contain between 0 and 255 characters).

See Also
Asc, Chr$, InStr, Left$, Mid$, Right$, Space$, Str$, Val

Len Function Example
The example shown below shows a program which takes a part data string as its input and parses out
the part number, part name, and part count.

Function ParsePartData(DataIn$ As String, ByRef PartNum$ As String,
ByRef PartName$ As String, ByRef PartCount As Integer)

 Integer pos
 String temp$

 pos = Instr(DataIn$, ",")
 PartNum$ = Left$(DataIn$, pos - 1)

 DataIn$ = Right$(datain$, Len(DataIn$) - pos)
 pos = Instr(DataIn$, ",")

 PartName$ = Left$(DataIn$, pos - 1)

 PartCount = Val(Right$(datain$, Len(DataIn$) - pos))

Fend

Some other example results from the Len instruction from the command window.

> ? len("ABCDEFG")
7

> ? len("ABC")
3

> ? len("")
0
>

F

LimitTorque Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 219

LimitTorque Statement

Sets / returns the upper torque value in High power mode.

Syntax

(1) LimitTorque AllMax
(2) LimitTorque j1Max, j2Max, j3Max, j4Max
(3) LimitTorque j1Max, j2Max, j3Max, j4Max, j5Max, j6Max
(4) LimitTorque

Parameter

AllMax specify the percentage of high power torque upper limit value for all axes to the maximum
momentary torque of each axis by an integer number

j #n Max specify the percentage of high power torque upper limit value for axis #n to the maximum
momentary torque of axis #n by an integer number

Return Value

Returns the current LimitTorque value if the parameter is omitted.

Description

Sets the upper limit value of torque in high power mode. Normally, the maximum torque is set and
there is no need to change this setting value. This statement is useful to restrict the torque not to
exceed which is necessary for the specific motion in order to reduce damage to the manipulator and
equipment caused by collision with peripherals.
The upper limit value is a peak torque in specific motion measured by PTRQ with allowance
considering the variation added (approximately 10%).

The torque lower than the upper limit for Low power mode cannot be set by this command. The
smallest values vary for models and joints. Display the setting value and confirm the actual upper limit
value after setting the value.

In any of the following cases, LimitTorque becomes the default value.

Controller startup
Motor On
SFree, SLock, or Brake is executed
Reset or Reset Error is executed
Task end by STOP switch or Quit All

Note
Too low LimitTorque setting

LimitTorque limits the torque for the specific motion as the upper limit value to operate the manipulator
with the set acceleration/deceleration regardless of the torque size necessary for the motion. As a
result of this, if the motion requires larger torque than the set upper limit value, the robot may not be
able to operate properly and cause vibrational motion, noise, or position deviation and overrun. Make
sure to measure PTRQ before using the torque control. If the above problems occur, set the upper
limit value larger and adjust the value so that the manipulator can operate properly.

> S

LimitTorque Statement

220 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

See Also
LimitTorque Function, Power, PTrq, RealTorque

LimitTorque Statement Example

Following is the example which operates the manipulator with the maximum torque of Joint #1 at 80 %.

Function main
 Motor On
 Power high
 Speed 100; Accel 100,100
 LimitTorque 80,100,100,100 'Restricts the maximum torque of Joint #1 to 80 %
 Jump P1 'Executes the Jump motion
Fend

LimitTorque Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 221

LimitTorque Function

Returns the setting value of LimitTorque command.

Syntax

LimitTorque(jointNumber)

Parameter

jointNumber Integer expression ranging from 1 to 6.

Return Value

Returns an integer number representing the setting value of LimitTorque command.

See Also

LimitTorque

Len Function Example

Print LimitTorque(1) 'Displays the LimitTorque value of Joint #1.

F

LimZ Statement

222 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

LimZ Statement

Determines the default value of the Z joint height for Jump commands.

Syntax
(1) LimZ zLimit
(2) LimZ

Parameters
zLimit A coordinate value within the movable range of the Z joint.

Return Values
Displays the current LimZ value when parameter is omitted.

Description
LimZ determines the maximum Z joint height which the arm move to when using the Jump instruction,
wherein the robot arm raises on the Z joint, moves in the X-Y plane, then lowers on the Z joint. LimZ
is simply a default Z joint value used to define the Z joint ceiling position for use during motion caused
by the Jump instruction. When a specific LimZ value is not specified in the Jump instruction, the last
LimZ setting is used for the Jump instruction.

Note
Resetting LimZ to 0

Restarting the controller, or executing the SFree, SLock, Motor On commands will initialize LimZ to 0.

LimZ Value is Not Valid for Arm, Tool, or Local Coordinates:
LimZ Z joint height limit specification is the Z joint value for the robot coordinate system. It is not the Z
joint value for Arm, Tool, or Local coordinates. Therefore take the necessary precautions when using
tools or end effectors with different operating heights.

LimZ does not affect Jump3 and Jump3CP
LimZ has no affect on Jump3 or Jump3CP since the span motion is not necessarily perpendicular to
the Z axis of the coordinate system.

See Also

Jump

LimZ Statement Example
The example below shows the use of LimZ in Jump operations.

Function main
 LimZ -10 'Set the default LimZ value
 Jump P1 'Move up to Z=-10 position for Jump
 Jump P2 LimZ -20 'Move up to Z=-20 position for Jump
 Jump P3 'Move up to Z=-10 position for Jump
Fend

> S

LimZ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 223

LimZ Function

Returns the current LimZ setting.

Syntax
LimZ

Return Values
Real number containing the current LimZ setting.

See Also
LimZ Statement

LimZ Function Example

Real savLimz

savLimz = LimZ
LimZ -25
Go pick
LimZ savLimZ

F

Line Input Statement

224 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Line Input Statement

Reads input data of one line and assigns the data to a string variable.

Syntax
Line Input stringVar$

Parameters
stringVar$ A string variable name. (Remember that the string variable must end with the

$ character.)

Description
Line Input reads input data of one line from the display device and assigns the data to the string
variable used in the Line Input instruction. When the Line Input instruction is ready to receive data
from the user, it causes a "?" prompt to be displayed on the display device. The input data line after
the prompt is then received as the value for the string variable. After inputting the line of data press the
[ENTER] key.

See Also
Input, Input #, Line Input#, ParseStr

Line Input Statement Example
The example below shows the use of Line Input.

Function Main
 String A$
 Line Input A$ 'Read one line input data into A$
 Print A$
Fend

Run the program above using the F5 key or Run menu from EPSON RC+ main
screen. A resulting run session may be as follows:

?A, B, C
A, B, C

> S

Line Input # Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 225

Line Input # Statement

Reads data of one line from the specified communication port or the device.

Syntax
Line Input #handle, stringVar$

Parameters
handle The communications handle or the device ID. Communication handles can be

specified in OpenCom (RS232) and OpenNet (TCP/IP) statements.
 Device ID integers are as follows.

21 RC+
23 OP
24 TP (TP1 only)

stringVar$ A string variable. (Remember that string variables must end with a $ character.)

Description
Line Input # reads string data of one line from the device specified with the handle parameter, and
assigns the data to the string variable stringVar$.

See Also
Input, Input #, Line Input

Line Input # Statement Example
This example receives the string data from the communication port number 1, and assigns the data to
the string variable A$.

Function lintest
 String a$
 Print #1, "Please input string to be sent to robot"
 Line Input #1, a$
 Print "Value entered = ", a$
Fend

> S

LJM Function

226 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

LJM Function

Returns the point data with the orientation flags converted to enable least joint motion when
moving to a specified point based on the reference point.

Syntax
LJM (Point, [refPoint, [orientationFlag]])

Parameters
Point Specifies point data.
refPoint Specifies the reference point data. When this is omitted, the reference point is

the current position (Here).
orientationFlag

6-axis robot 1: Converts the wrist orientation (Wrist Flag), J4Flag or J6Flag. (default)
 2: Converts the J4Flag or J6Flag.

RS series 1: Converts the hand orientation (Hand Flag), J1Flag or J2Flag. (default)
 2: Converts the hand orientation (Hand Flag), J1Flag or J2Flag.
 Prevents the U axis from moving out of motion range at flag convert.

Description
When the 6-axis robot moves to a point calculated by such as pallet or relative offsets, the wrist part
may rotate to an unintended direction. The point calculation above does not depend on robot models
and results in motion without converting the required point flag.
LJM function can be used to convert the point flag to prevent the unintended wrist rotation.

In the same way, when the RS series robot moves to a point calculated by such as pallet or relative
offsets, Arm #1 may rotate to an unintended direction. LJM function can be used to convert the point
flag to prevent the unintended rotation of Arm #1.

In addition, the U axis of an RS series robot may go out of motion range when the orientation flag is
converted, which will cause an error.
To prevent this error, the LJM function adjusts the U axis target angle so that it is inside the motion
range. This is available when “2” is selected for orientationFlag.

Returns the specified point for all robots except the 6-axis and RS series robot.

See Also
Pallet

F

LJM Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 227

LJM Function Example

Function main
 Integer i, j

 P0 = XY(300, 300, 300, 90, 0, 180)
 P1 = XY(200, 280, 150, 90, 0, 180)
 P2 = XY(200, 330, 150, 90, 0, 180)
 P3 = XY(-200, 280, 150, 90, 0, 180)

 Pallet 1, P1, P2, P3, 10, 10

 Motor On
 Power High
 Speed 50; Accel 50, 50
 SpeedS 1000; AccelS 5000

 Go P0
 P11 = P0 -TLZ(50)

 For i = 1 To 10
 For j = 1 To 10
 'Specify points
 P10 = P11 'Depart point
 P12 = Pallet(1, i, j) 'Target point
 P11 = P12 -TLZ(50) 'Start approach point
 'Converting each point to LJM
 P10 = LJM(P10)
 P11 = LJM(P11, P10)
 P12 = LJM(P12, P11)
 'Execute motion
 Jump3 P10, P11, P12 C0
 Next
 Next
Fend

Function main2
 P0 = XY(300, 300, 300, 90, 0, 180)
 P1 = XY(400, 0, 150, 90, 0, 180)
 P2 = XY(400, 500, 150, 90, 0, 180)
 P3 = XY(-400, 0, 150, 90, 0, 180)
 Pallet 1, P1, P2, P3, 10, 10

 Motor On
 Power High
 Speed 50; Accel 50, 50
 SpeedS 1000; AccelS 5000

 Go P0

 Do
 ' Specify points
 P10 = Here -TLZ(50) 'Depart point
 P12 = Pallet(1, Int(Rnd(9)) + 1, Int(Rnd(9)) + 1) 'Target point
 P11 = P12 -TLZ(50) 'Start approach point

 If TargetOK(P11) And TargetOK(P12) Then 'Point chaeck
 ' Converting each point to LJM
 P10 = LJM(P10)
 P11 = LJM(P11, P10)
 P12 = LJM(P12, P11)
 'Execute motion
 Jump3 P10, P11, P12 C0
 EndIf
 Loop
Fend

LoadPoints Statement

228 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

LoadPoints Statement

Loads a point file into the point memory area for the current robot.

Syntax
LoadPoints fileName [, Merge]

Parameters
fileName String expression containing the specific file to load into the current robot's point

memory area. The extension is .PTS appended to the end so no extension is to
be specified by the user. The file must exist in the current project. No path can
be specified.

Merge Optional. If supplied, then the current points are not cleared before loading the
new points. Points in the file are added the to the current points. If a point exists
in the file, it will overwrite the point in memory.

Description

LoadPoints loads point files into the main memory area of the controller.

Use Merge to combine point files. For example, you could have one main point file that includes
common points for locals, parking, etc in the range from 0 to 100. Then use Merge to load other point
files for each part being run without clearing the common points. The range could be from 101 to 999.

Potential Errors
A Path Cannot be Specified

If fileName contains a path, an error will occur. Only a file name in the current project can be specified.
File Does Not Exist

If fileName does not exist, an error will be issued.
Point file not for the current robot

If fileName is not a point file for the current robot, the following error will be issued: Point file not found
for current robot. To correct this, add the Point file to the robot in the Project editor, or execute
SavePoints or ImportPoints.

See Also

ClearPoints, SavePoints

LoadPoints Statement Example

Function main

 ' Load common points for the current robot
 LoadPoints "R1Common.pts"

 ' Merge points for part model 1
 LoadPoints "R1Model1.pts", Merge

Fend

> S

Local Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 229

Local Statement

Defines and displays local coordinate systems.

Syntax
(1) Local localNumber, (pLocal1 : pBase1), (pLocal2 : pBase2), [{ L | R }], [BaseU]
(2) Local localNumber, pCoordinateData
(3) Local localNumber, pOrigin, [pXaxis], [pYaxis], [{ X | Y }]
(4) Local localNumber

Parameters
localNumber The local coordinate system number. A total of 15 local coordinate systems (of

the integer value from 1 to 15) may be defined.
pLocal1, pLocal2 Point variables with point data in the local coordinate system.
pBase1, pBase2 Point variables with point data in the base coordinate system.
L | R Optional. Align local origin to left (first) or right (second) base points.
BaseU Optional. When supplied, U axis coordinates are in the base coordinate system.

When omitted, U axis coordinates are in the local coordinate system.
pCoordinateData Point data representing the coordinate data of the origin and direction.
pOrigin Integer expression representing the origin point using robot coordinate system.
pXaxis Optional. Integer expression representing a point along the X axis using robot

coordinate system if X alignment is specified.
pYaxis Optional. Integer expression representing a point along the Y axis using robot

coordinate system if Y alignment is specified.
X | Y If X alignment is specified, then pXaxis lies on the X axis of the local. The Y axis

and Z axis are calculated to be orthogonal to X in the plane that is created by the
3 local points. If Y alignment is specified, then pYaxis lies on the Y axis of the
local. The X axis and Z axis are calculated to be orthogonal to Y in the plane that
is created by the 3 local points.

Description

(1) Local defines a local coordinate system by specifying 2 points, pLocal1 and pLocal2, contained in
it that coincide with two points, pBase1 and pBase2, contained in the base coordinate system.

Example:
Local 1, (P1:P11), (P2:P12)

P1 and P2 are local coordinate system points. P11 and P12 are base coordinate system points.

If the distance between the two specified points in the local coordinate system is not equal to that
between the two specified points in the base coordinate system, the XY plane of the local
coordinate system is defined in the position where the midpoint between the two specified points in
the local coordinate system coincides with that between the two specified points in the base
coordinate system.

Similarly, the Z axis of the local coordinate system is defined in the position where the midpoints
coincide with each other.

(2) Defines a local coordinate system by specifying the origin and axis rotation angles with respect to
the base coordinate system.

Example:

Local 1, XY(x, y, z, u)
Local 1, XY(x, y, z, u, v, w)
Local 1, P1

> S

Local Statement

230 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

(3) Defines a 3D local coordinate system by specifying the origin point, x axis point, and y axis point.

Only the X, Y, and Z coordinates of each point are used. The U, V, and W coordinates are ignored.
When the X alignment parameter is used, then pXaxis is on the X axis of the local and only the Z
coordinate of pYaxis is used. When the Y alignment parameter is used, then pYaxis is on the Y
axis of the local and only the Z coordinate of pXaxis is used.

Example:

Local 1, P1, P2, P3
Local 1, P1, P2, P3, X
Local 1, P1, P2, P3, Y

(4) Displays the specified local settings.

Using L and R parameters
While Local basically uses midpoints for positioning the axes of your local coordinate system as
described above, you can optionally specify left or right local by using the L and R parameters.

Left Local
Left local defines a local coordinate system by specifying point pLocal1 corresponding to point pBase1
in the base coordinate system (Z axis direction is included.)

Right Local
Right local defines a local coordinate system by specifying point pLocal2 corresponding to point
pBase2 in the base coordinate system. (Z axis direction is included.)

Using the BaseU parameter
If the BaseU parameter is omitted, then the U axis of the local coordinate system is automatically
corrected in accordance with the X and Y coordinate values of the specified 4 points. Therefore, the 2
points in the base coordinate system may initially have any U coordinate values.

It may be desired to correct the U axis of the local coordinate system based on the U coordinate
values of the two points in the base coordinate system, rather than having it automatically corrected
(e.g. correct the rotation axis through teaching). To do so, supply the BaseU parameter.

Description
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
ArmSet, Base, ECPSet, LocalClr, TLSet, Where

Local Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 231

Local Statement Examples
Here are some examples from the command window:

Left aligned local:

> p1 = 0, 0, 0, 0/1
> p2 = 100, 0, 0, 0/1
> p11 = 150, 150, 0, 0
> p12 = 300, 150, 0, 0
> local 1, (P1:P11), (P2:P12), L
> p21 = 50, 0, 0, 0/1
> go p21

Local defined with only the origin point:

> local 1, 100, 200, -20, 0

Local defined with only the origin point rotated 45 degrees about the X axis:

> local 2, 50, 200, 0, 0, 45, 0

3D Local with p2 aligned with the X axis of the local:

> local 3, p1, p2, p3, x

3D Local with p3 aligned with the Y axis of the local:

> local 4, p1, p2, p3, y

Local Function

232 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Local Function

Returns a specified local coordinate system data as a point.

Syntax
Local(localNumber)

Parameters
localNumber local coordinate system number (integer from 1 to 15) using an expression or

numeric value.

Return Values
Specified local coordinate system data as point data.

See Also
Local Statement

Local Function Example

P1 = Local(1)

F

LocalClr Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 233

LocalClr Statement

Clears (undefines) a local coordinate system.

Syntax
LocalClr localNumber

Parameters
localNumber Integer expression representing which of 15 locals (integer from 1 to 15) to clear

(undefine).

Description
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
Arm, ArmSet, ECPSet, Local, Tool, TLClr, TLSet

LocalClr Statement Example

LocalClr 1

> S

LocalDef Function

234 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

LocalDef Function

Returns local definition status.

Syntax
LocalDef (localCoordinateNumber)

Parameters
localCoordinateNumber Integer expression representing which local coordinate to return status for.

Return Values
True if the specified local has been defined, otherwise False.

See Also
Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLClr, TLSet

LocalDef Function Example

Function DisplayLocalDef(localNum As Integer)

 If LocalDef(localNum) = False Then
 Print "Local ", localNum, "is not defined"
 Else
 Print "Local 1: ",
 Print Local(localNum)
 EndIf
Fend

> F

Lof Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 235

Lof Function

Checks whether the specified RS-232 or TCP/IP port has any lines of data in its buffer.

Syntax
Lof(portNumber)

Parameters
portNumber The communication port number.

Return Values
The number of lines of data in the buffer. If there is no data in the buffer, Lof returns “0”.

Description
Lof checks whether or not the specified port has received data lines. The data received is stored in
the buffer irrespective of the Input# instruction.

See Also
ChkCom, ChkNet, Input#

Lof Function Example
This Command window example prints out the number of lines of data received through the
communication port number 1.

>print lof(1)
 5
>

F

Long Statement

236 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Long Statement

Declares variables of type long integer. (4 byte whole number).

Syntax
Long varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type Long.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 to the upper

bound value.
 The total available number of array elements for local and global preserve

variables is 1000.
 The total available number of array elements for global and module variables is

10000.
 To calculate the total elements used in an array, use the following formula. (If a

dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)

Description

Long is used to declare variables as type Long. Variables of type Long can contain whole numbers
with values from -2,147,483,648 to 2,147,483,647. Local variables should be declared at the top of a
function. Global and module variables must be declared outside of functions.

See Also
Boolean, Byte, Double, Global, Integer, Real, String

Long Statement Example
The following example shows a simple program which declares some variables as Longs using Long.

Function longtest
 Long A(10) 'Single dimension array of long
 Long B(10, 10) 'Two dimension array of long
 Long C(5, 5, 5) 'Three dimension array of long
 Long var1, arrayVar(10)
 Long i
 Print "Please enter a Long Number"
 Input var1
 Print "The Integer variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter a Long Number"
 Input arrayVar(i)
 Print "Value Entered was ", arrayVar(i)
 Next I
Fend

S

LSet$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 237

LSet$ Function

Returns the specified string with trailing spaces appended up to the specified length..

Syntax
LSet$ (string, length)

Parameters
string String expression.
length Integer expression for the total length of the string returned.

Return Values
Specified string with trailing spaces appended.

See Also
RSet$, Space$

LSet$ Function Example

temp$ = "123"
temp$ = LSet$(temp$, 10) ' temp$ = "123 "

F

LShift Function

238 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

LShift Function

Shifts numeric data to the left by a user specified number of bits.

Syntax
LShift(number, shiftBits)

Parameters
number Integer expression to be shifted.
shiftBits The number of bits (integer from 0 to 31) to shift number to the left.

Return Values
Returns a numeric result which is equal to the value of number after shifting left shiftBits number of
bits.

Description
LShift shifts the specified numeric data (number) to the left (toward a higher order digit) by the
specified number of bits (shiftBits). The low order bits shifted are replaced by 0.

The simplest explanation for LShift is that it simply returns the result of number * 2shiftBits.

Note
Numeric Data Type:

The numeric data number may be any valid numeric data type. LShift works with data types: Byte,
Integer, Long, and Real.

See Also

And, Not, Or, RShift, Xor

LShift Function Example

Function lshiftst
 Integer i
 Integer num, snum
 num = 1
 For i = 1 to 10
 Print "i =", i
 snum = LShift(num, i)
 Print "The shifted num is ", snum
 Next i
Fend

Some other example results from the LShift instruction from the command window.

> Print LShift(2,2)
8
> Print LShift(5,1)
10
> Print LShift(3,2)
12
>

F

LTrim$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 239

LTrim$ Function

Returns a string equal to specified string without leading spaces.

Syntax
LTrim$ (string)

Parameters
string String expression.

Return Values
Specified string with leading spaces removed.

See Also
RTrim$, Trim$

LTrim$ Function Example

str$ = " data "
str$ = LTrim$(str$) ' str$ = "data "

F

Mask Operator

240 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Mask Operator

Bitwise mask for Wait statement condition expression.

Syntax
Wait expr1 Mask exrp2

Parameters
expr1 Any valid expression input condition for Wait.
expr2 Any valid expression which returns a numeric result.

Description
The Mask operator is a bitwise And for Wait statement input condition expressions.

See Also
Wait

Mask Operator Example

' Wait for the lower 3 bits of input port 0 to equal 1
Wait In(0) Mask 7 = 1

S

MemIn Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 241

MemIn Function

Returns the status of the specified memory I/O port. Each port contains 8 memory bits.

Syntax
MemIn(portNumber)

Parameters
portNumber Integer expression representing memory I/O bytes.

Return Values
Returns an integer value between 0 and 255. The return value is 8 bits, with each bit corresponding to
1 memory I/O bit.

Description
MemIn provides the ability to look at the value of 8 memory I/O bits at the same time. The MemIn
instruction can be used to store the 8 memory I/O bit status into a variable or it can be used with the
Wait instruction to Wait until a specific condition which involves more than 1 memory I/O bit is met.

Since 8 bits are retrieved at a time, the return value ranges from 0 and 255. Please review the chart
below to see how the integer return values correspond to individual memory I/O bits.

Memory I/O Bit Result (Using Port #0)
Return Value 7 6 5 4 3 2 1 0

1 Off Off Off Off Off Off Off On
5 Off Off Off Off Off On Off On

15 Off Off Off Off On On On On
255 On On On On On On On On

Memory I/O Bit Result (Using Port #31)
Return Value 255 254 253 252 251 250 249 248

3 Off Off Off Off Off Off On On
7 Off Off Off Off Off On On On
32 Off Off On Off Off Off Off Off
255 On On On On On On On On

Notes
Difference Between MemIn and MemSw

The MemSw instruction allows the user to read the value of 1 memory I/O bit. The return value from
MemSw is either a 1 or a 0 which indicates that the memory I/O bit is either On or Off. MemSw can
check each of the memory I/O bits individually. The MemIn instruction is very similar to the MemSw
instruction in that it also is used to check the status of the memory I/O bits. However there is 1 distinct
difference. The MemIn instruction checks 8 memory I/O bits at a time vs. the single bit checking
functionality of the MemSw instruction. MemIn returns a value between 0 and 255 which tells the user
which of the 8 I/O bits are On and which are Off.

See Also

In, InBCD, Off, MemOff, On, MemOn, OpBCD, Oport, Out, MemOut, Sw, MemSw, Wait

F

MemIn Function

242 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

MemIn Function Example
The program example below gets the current value of the first 8 memory I/O bits and then makes sure
that all 8 I/O are currently set to “0” before proceeding. If they are not “0” an error message is given to
the operator and the task is stopped.

Function main
 Integer var1

 var1 = MemIn(0) 'Get the 1st 8 memory I/O bit value
 If var1 = 0 Then
 Go P1
 Go P2
 Else
 Print "Error in initialization!"
 Print "First 8 memory I/O bits were not all set to 0"
 EndIf
Fend

Other simple examples from the Command window are as follows:

> memout 0, 1
> print MemIn(0)
1
> memon 1
> print MemIn(0)
3
> memout 31,3
> print MemIn(31)
3
> memoff 249
> print MemIn(31)
1
>

MemInW Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 243

MemInW Function

Returns the status of the specified memory I/O word port.
Each word port contains 16 memory I/O bits.

Syntax
MemInW(WordPortNum)

Parameters
WordPortNum Integer expression from 0 to 15 representing the memory I/O Word.

Return Values
Returns the current status of the memory I/O (long integers from 0 to 65535).

See Also
MemIn, MemOut, MemOutW

MemInW Function Example

Long word0

word0 = MemInW(0)

F

MemOff Statement

244 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

MemOff Statement

Turns Off the specified bit of the memory I/O.

Syntax
MemOff { bitNumber | memIOLabel }

Parameters
bitNumber Integer expression representing memory I/O bits.
memIOLabel Memory I/O label.

Description
MemOff turns Off the specified bit of memory I/O. The 256 memory I/O bits are typically excellent
choices for use as status bits for uses such as On/Off, True/False, Done/Not Done, etc. The MemOn
instruction turns the memory bit On, the MemOff instruction turns it Off, and the MemSw instruction is
used to check the current state of the specified memory bit. The Wait instruction can also be used with
the memory I/O bit to cause the system to wait until a specified memory I/O status is set.

Note
Memory outputs off

All memory I/O bits are turned off when the controller are restarted. They are not turned off by
Emergency stop, safeguard open, program end, Reset command, or EPSON RC+ restart.

See Also

In, MemIn, InBCD, Off, On, MemOn, OpBCD, Oport, Out, MemOut, Sw, MemSw, Wait

MemOff Statement Example
The example shown below shows 2 tasks each with the ability to initiate motion instructions. However,
a locking mechanism is used between the 2 tasks to ensure that each task gains control of the robot
motion instructions only after the other task is finished using them. This allows 2 tasks to each
execute motion statements as required and in an orderly predictable fashion. MemSw is used in
combination with the Wait instruction to wait until the memory I/O #1 is the proper value before it is
safe to move again. MemOn and MemOff are used to turn on and turn off the memory I/O for proper
synchronization.

Function main
 Integer I
 MemOff 1
 Xqt 2, task2
 For i = 1 to 100
 Wait MemSw(1) = Off
 Go P(i)
 MemOn 1
 Next I
Fend

Function task2
 Integer I
 For i = 101 to 200
 Wait MemSw(1) = On
 Go P(i)
 MemOff 1
 Next I
Fend

>

S

MemOff Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 245

Other simple examples from the command window are as follows:

> MemOn 1 'Switch memory I/O bit #1 on
> Print MemSw(1)
1
> MemOff 1 'Switch memory I/O bit #1 off
> Print MemSw(1)
0

MemOn Statement

246 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

MemOn Statement

Turns On the specified bit of the memory I/O.

Syntax
MemOn { bitNumber | memIOLabel }

Parameters
bitNumber Integer expression representing memory I/O bits.
memIOLabel Memory I/O label.

Description
MemOn turns on the specified bit of the robot memory I/O. The 256 memory I/O bits are typically
used as task communication status bits. The MemOn instruction turns the memory bit On, the
MemOff instruction turns it Off, and the MemSw instruction is used to check the current state of the
specified memory bit. The Wait instruction can also be used with the memory bit to cause the system
to wait until a specified status is set.

Note
Memory outputs off

All memory I/O bits are turned off when the controller are restarted. They are not turned off by
Emergency stop, safeguard open, program end, Reset command, or EPSON RC+ restart.

See Also

In, MemIn, InBCD, Off, MemOff, On, OpBCD, Oport, Out, MemOut, Sw, MemSw, Wait

MemOn Statement Example
The example shown below shows 2 tasks each with the ability to initiate motion instructions. However, a
locking mechanism is used between the 2 tasks to ensure that each task gains control of the robot motion
instructions only after the other task is finished using them. This allows 2 tasks to each execute motion
statements as required and in an orderly predictable fashion. MemSw is used in combination with the
Wait instruction to wait until the memory I/O #1 is the proper value before it is safe to move again.
MemOn and MemOff are used to turn on and turn off the memory I/O for proper synchronization.

Function main
 Integer I
 MemOff 1
 Xqt 2, task2
 For i = 1 to 100
 Wait MemSw(1) = Off
 Go P(i)
 MemOn 1
 Next I
Fend

Function task2
 Integer I
 For i = 101 to 200
 Wait MemSw(1) = On
 Go P(i)
 MemOff 1
 Next I
Fend

> S

MemOn Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 247

Other simple examples from the command window are as follows:

> memon 1
> print memsw(1)
1
> memoff 1
> print memsw(1)
0

MemOut Statement

248 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

MemOut Statement

Simultaneously sets 8 memory I/O bits.

Syntax
MemOut portNumber, outData

Parameters
portNumber Integer expression representing memory I/O bit port number. The portNumber selection

corresponds to the following:
Portnum Outputs

0 0-7
1 8-15
. .

outData Integer expression between 0 and 255 representing the output pattern for the output
group selected by portNumber. If represented in hexadecimal form the range is from
&H0 to &HFF. The lower digit represents the least significant digits (or the 1st 4 outputs)
and the upper digit represents the most significant digits (or the 2nd 4 outputs).

Description

MemOut simultaneously sets 8 memory I/O bits using the combination of the portNumber and outData
values specified by the user to determine which outputs will be set. The portNumber parameter
specifies which group of 8 outputs to use where portNumber = 0 means outputs 0 to 7, portNumber =
1 means outputs 8 to 15, etc.

Once a portNumber is selected, a specific output pattern must be defined. This is done using the
outData parameter. The outData parameter may have a value between 0 and 255 and may be
represented in hexadecimal or integer format. (i.e. &H0 to &HFF or 0 to 255)

The table below shows some of the possible I/O combinations and their associated outData values
assuming that portNumber is “0”, and “1” accordingly.

Output Settings When portNumber=0 (Output number)
OutData Value 7 6 5 4 3 2 1 0

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 Off On On Off Off Off On On
255 On On On On On On On On

> S

MemOut Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 249

Output Settings When portNumber=1 (Output number)
OutData Value 15 14 13 12 11 10 9 8

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 Off On On Off Off Off On On
255 On On On On On On On On

See Also

In, MemIn, InBCD, MemOff, MemOn, MemSw, Off, On, OpBCD, Oport, Out, Sw, Wait

MemOut Statement Example
The example below shows main task starting a background task called “iotask”. The “iotask” is a
simple task to toggle memory I/O bits from 0 to 3 On and Off. The MemOut instruction makes this
possible using only 1 command rather than turning each memory I/O bit on and off individually.

Function main
 Xqt 2, iotask
 Go P1
 .
 .
Fend

Function iotask

 Do
 MemOut 0, &HF
 Wait 1
 MemOut 0, &H0
 Wait 1
 Loop
Fend

Other simple examples from the command window are as follows:

> MemOut 1,6 'Turns on memory I/O bits 9 & 10
> MemOut 2,1 'Turns on memory I/O bit 8
> MemOut 3,91 'Turns on memory I/O bits 24, 25, 27, 28, and 30

MemOutW Statement

250 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

MemOutW Statement

Simultaneously sets 16 memory I/O bits.

Syntax
MemOutW wordPortNum, outputData

Parameters
wordPortNum Integer expression from 0 to 31 representing memory I/O words.
outputData Specifies output data (integers from 0 to 65535) using an expression or numeric

value.

Description
Changes the current status of memory I/O port group specified by the word port number to the
specified output data.

See Also
MemIn, MemInW, MemOut

MemOutW Statement Example

MemOutW 0, 25

> S

MemSw Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 251

MemSw Function

Returns the status of the specified memory I/O bit.

Syntax
MemSw(bitNumber)

Parameters
bitNumber Integer expression representing the memory I/O bit number.

Return Values
Returns “1” when the specified bit is On and “0” when the specified bit is Off.

Description
MemSw returns the status of one memory I/O bit. Valid entries for MemSw range from bit 0 to bit 511.
MemOn turns the specified bit on and MemOff turns the specified bit Off.

See Also
In, MemIn, InBCD, MemOff, MemOn, MemOut, Off, On, OpBCD, Oport, Out, Sw, Wait

MemSw Function Example

The example shown below shows 2 tasks each with the ability to initiate motion instructions. However,
a locking mechanism is used between the 2 tasks to ensure that each task gains control of the robot
motion instructions only after the other task is finished using them. This allows 2 tasks to each
execute motion statements as required and in an orderly predictable fashion. MemSw is used in
combination with the Wait instruction to wait until the memory I/O bit 1 is the proper value before it is
safe to move again.

Function main
 Integer I
 MemOff 1
 Xqt 2, task2
 For i = 1 to 100
 Wait MemSw(1) = Off
 Go P(i)
 MemOn 1
 Next I
Fend

Function task2
 Integer I
 For i = 101 to 200
 Wait MemSw(1) = On
 Go P(i)
 MemOff 1
 Next I
Fend

Other simple examples from the Command window are as follows:

> memon 1
> print memsw(1)
1
> memoff 1
> print memsw(1)
0

F

MHour Function

252 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

MHour Function

Returns the accumulated MOTOR ON time of the robot motors.

Syntax
MHour ([robotNumber])

Parameters
robotNumber Specify the robot number to check the MOTOR ON time by an integer value.
 If omitted, currently selected robot will be used.

Return Values
Returns the accumulated MOTOR ON time of the motors by an integer value.

See Also
Time, Hour

MHour Function Example

Robot 2
Print MHour
Print MHour(1)

F

Mid$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 253

Mid$ Function

Returns a substring of a string starting from a specified position.

Syntax
Mid$(string, position, [count])

Parameters
string Source string expression.
position The starting position in the character string for copying count characters.
count Optional. The number of characters to copy from string starting with the character

defined by position. If omitted, then all characters from position to the end of the
string are returned.

Return Values

Returns a substring of characters from string.

Description
Mid$ returns a substring of as many as count characters starting with the position character in string.

See Also
Asc, Chr$, InStr, Left$, Len, Right$, Space$, Str$, Val

Mid$ Function Example
The example shown below shows a program that extracts the middle 2 characters from the string
"ABCDEFGHIJ" and the remainder of the string starting at position 5.

Function midtest
 String basestr$, m1$, m2$
 basestr$ = "ABCDEFGHIJ"
 m1$ = Mid$(basestr$, (Len(basestr$) / 2), 2)
 Print "The middle 2 characters are: ", m1$
 m2$ = Mid$(basestr$, 5)
 Print "The string starting at 5 is: ", m2$
Fend

F

Mod Operator

254 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Mod Operator

Returns the remainder obtained by dividing a numeric expression by another numeric expression.

Syntax
number Mod divisor

Parameters
number The number being divided (the dividend).
divisor The number which number is divided by.

Return Values
Returns the remainder after dividing number by divisor.

Description
Mod is used to get the remainder after dividing 2 numbers. The remainder is a whole number. One
clever use of the Mod instruction is to determine if a number is odd or even. The method in which the
Mod instruction works is as follows: number is divided by divisor. The remainder left over after this
division is then the return value for the Mod instruction.

See Also
Abs, Atan, Atan2, Cos, Int, Not, Sgn, Sin, Sqr, Str$, Tan, Val

Mod Operator Example
The example shown below determines if a number (var1) is even or odd. When the number is even
the result of the Mod instruction will return “0”. When the number is odd, the result of the Mod
instruction will return “1”.

Function modtest
....Integer var1, result

....Print "Enter an integer number:"
....Input var1
....result = var1 Mod 2
....Print "Result = ", result
....If result = 0 Then
........Print "The number is EVEN"
....Else
........Print "The number is ODD"
....EndIf
Fend

Some other example results from the Mod instruction from the Command window.

> Print 36 Mod 6
> 0

> Print 25 Mod 10
> 5
>

Motor Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 255

Motor Statement

Turns motor power for all axes on or off for the current robot.

Syntax
Motor ON | OFF

Parameters
ON | OFF The keyword ON is used to turn the Motor Power on. The keyword OFF is used to turn

Motor Power Off.

Description
The Motor On command is used to turn Motor Power On and release the brakes for all axes. Motor
Off is used to turn Motor Power Off and set the brakes.

In order to move the robot, motor power must be turned on.

After an emergency stop, or after an error has occurred that requires resetting with the Reset
command, execute Reset, and then execute Motor On.

Motor On automatically sets the following items:

Power Low
Fine Default values
Speed Default values
SpeedR Default values
SpeedS Default values
Accel Default values
AccelS Default values
AccelR Default values
PTPBoost Default values
LimZ 0

See Also
Brake, Power, Reset, SFree, SLock

Motor Statement Example
The following examples are done from the command window:

> Motor On

> Motor Off

> S

Motor Function

256 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Motor Function

Returns status of motor power for the current robot.

Syntax
Motor

Return Values
0 = Motors off, 1 = Motors on.

See Also
Motor Statement

Motor Function Example

If Motor = Off Then
 Motor On
EndIf

F

Move Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 257

Move Statement

Moves the arm from the current position to the specified point using linear interpolation
(i.e. moving in a straight line) at a constant tool center point velocity).

Syntax
Move destination [ROT] [ECP] [CP] [searchExpr] [!...!]

Parameters
destination The target destination of the motion using a point expression.
ROT Optional. Decides the speed/acceleration/deceleration in favor of tool

rotation.
ECP Optional. External control point motion. This parameter is valid when the

ECP option is enabled.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and
other commands during motion.

Description

Move moves the arm from the current position to destination in a straight line. Move coordinates all
axes to start and stop at the same time. The coordinates of destination must be taught previously
before executing the Move instruction. Acceleration and deceleration for the Move is controlled by the
AccelS instruction. Speed for the move is controlled by the SpeedS instruction. If the SpeedS speed
value exceeds the allowable speed for any joint, power to all four joint motors will be turned off, and
the robot will stop.

Move uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to Using
Move with CP below on the relation between the speed/acceleration and the acceleration/deceleration.
If, however, the ROT modifier parameter is used, Move uses the SpeedR speed value and AccelR
acceleration and deceleration values. In this case SpeedS speed value and AccelS acceleration and
deceleration value have no effect.

Usually, when the move distance is “0” and only the tool orientation is changed, an error will occur.
However, by using the ROT parameter and giving priority to the acceleration and the deceleration of
the tool rotation, it is possible to move without an error. When there is not an orientational change with
the ROT modifier parameter and movement distance is not “0”, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed
exceeds the specified speed of the manipulator, an error will occur. In this case, please reduce the
speed or append the ROT modifier parameter to give priority to the rotational speed/ acceleration/
deceleration.

When ECP is used, the trajectory of the external control point coresponding to the ECP number
specified by ECP instruction moves straight with respect to the tool coordinate system. In this case,
the trajectory of tool center point does not follow a straight line.

> S

Move Statement

258 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

ECP

Work

TCP

The optional Till qualifier allows the user to specify a condition to cause the robot to decelerate to a
stop prior to completing the Move. The condition specified is simply a check against one of the inputs.
This is accomplished through using the Sw instruction. The user can check if the input is On or Off
and cause the arm to stop based on the condition specified. This feature works almost like an
interrupt where the Move is interrupted (stopped) once the Input condition is met. If the input
condition is never met during the Move then the arm successfully arrives on the point specified by
destination. For more information about the Till qualifier see the Till command.

Notes

Move Cannot
Move cannot execute range verification of the trajectory prior to starting the move itself. Therefore,
even for target positions that are within an allowable range, it is possible for the system to find a
prohibited position along the way to a target point. In this case, the arm may abruptly stop which may
cause shock and a servo out condition of the arm. To prevent this, be sure to perform range
verifications at low speed prior to using Move at high speeds. In summary, even though the target
position is within the range of the arm, there are some Moves which will not work because the arm
cannot physically make it to some of the intermediate positions required during the Move.

Using Move with CP
The CP parameter causes the arm to move to destination without decelerating or stopping at the point
defined by destination. This is done to allow the user to string a series of motion instructions together
to cause the arm to move along a continuous path while maintaining a specific speed throughout all
the motion. The Move instruction without CP always causes the arm to decelerate to a stop prior to
reaching the point destination destination.

Proper Speed and Acceleration Instructions with Move
The SpeedS and AccelS instructions are used to specify the speed and acceleration of the
manipulator during Move motion. Pay close attention to the fact that SpeedS and AccelS apply to
linear and circular interpolated motion while point to point motion uses the Speed and Accel
instructions.

Potential Errors
Attempt to Change Only Tool Orientation

Changing only tool orientation during the move is impossible. If this is attempted, an error will occur.
In this case, use the ROT parameter.

Move Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 259

Joint Overspeed Errors
When the motion requested results in the speed of one of the axes to exceed its maximum allowable
speed an overspeed error occurs. In the case of a motor overspeed error, the robot arm is brought to
a stop and servo power is turned off.

Attempt to Pass the Original Point (RS series)
It is impossible to operate the arm of RS series to pass near an original point. If attempted this, an
overspeed error will occur. For the operation near an original point, take the following actions.
 Lower the speed of SpeedS
 Find a different path to prevent an original point
 Use PTP motion such as Go command instead of Move command.

See Also

AccelS, Arc, CP, Go, Jump, Jump3, Jump3CP, SpeedS, Sw, Till

Move Statement Example

The example shown below shows a simple point to point move between points P0 and P1 and then
moves back to P0 in a straight line. Later in the program the arm moves in a straight line toward point
P2 until input #2 turns on. If input #2 turns On during the Move, then the arm decelerates to a stop
prior to arriving on point P2 and the next program instruction is executed.

Function movetest
 Home
 Go P0
 Go P1
 Move P2 Till Sw(2) = On
 If Sw(2) = On Then
 Print "Input #2 came on during the move and"
 Print "the robot stopped prior to arriving on"
 Print "point P2."
 Else
 Print "The move to P2 completed successfully."
 Print "Input #2 never came on during the move."
 EndIf
Fend

This example uses Move with CP. The diagram below shows arc motion which originated at the point
P100 and then moves in a straight line through P101, at which time the arm begins to form an arc.
The arc is then continued through P102 and on to P103. Next the arm moves in a straight line to
P104 where it finally decelerates to a stop. Note that the arm doesn't decelerate between each point
until its final destination of P104. The following function would generate such a motion.

P102

P100

P103 P104

P101

Function CornerArc
 Go P100
 Move P101 CP 'Do not stop at P101
 Arc P102, P103 CP 'Do not stop at P103
 Move P104 'Decelerate to stop at P104
Fend

MsgBox Statement

260 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

MsgBox Statement
Displays a message in a dialog box and waits for the operator to choose a button.

Syntax
MsgBox message$, [type], [title$], [answer]

Parameters
message$ The message that will be displayed.
type Optional. A numeric expression that is the sum of values specifying the number and type

of buttons to display, the icon style to use, the identity of the default button. The SPEL+
language includes predefined constants that can be used for this parameter. The
following table shows the values that can be used.
Symbolic constant Value Meaning

MB_OK 0 Display OK button only.
MB_OKCANCEL 1 Display OK and cancel buttons.
MB_ABORTRETRYIGNORE 2 Display Abort, Retry, and Ignore
buttons.
MB_YESNOCANCEL 3 Display Yes, No, and Cancel buttons.
MB_YESNO 4 Display Yes and No buttons.
MB_RETRYCANCEL 5 Display Retry and Cancel buttons.
MB_ICONSTOP 16 Stop sign.
MB_ICONQUESTION 32 Question mark.
MB_ICONEXCLAMATION 64 Exclamation mark.
MB_DEFBUTTON1 0 First button is default.
MB_DEFBUTTON2 256 Second button is default.

title$ Optional. String expression that is displayed in the title bar of the message box.
answer Optional. An integer variable that receives a value indicating the action taken by the

operator. The SPEL+ language includes predefined constants that can be used for
this parameter. The table below shows the values returned in answer.
Symbolic constant Value Meaning

IDOK 1 OK button selected.
IDCANCEL 2 Cancel button selected.
IDABORT 3 Abort button selected.
IDRETRY 4 Retry button selected.
IDYES 6 Yes button selected.
IDNO 7 No button selected.

Description
MsgBox automatically formats the message. If you want blank lines, use CRLF in the message. See
the example.

See Also
InputBox

S

MsgBox Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 261

MsgBox Statement Example
This example displays a message box that asks the operator if he/she wants to continue or not. The
message box will display two buttons: Yes and No. A question mark icon will also be displayed. After
MsgBox returns (after the operator clicks a button), then the answer is examined. If it's no, then all
tasks are stopped with the Quit command.

Function msgtest
 String msg$, title$
 Integer mFlags, answer

 msg$ = "Operation complete" + CRLF
 msg$ = msg$ + "Ready to continue?"
 title$ = "Sample Application"
 mFlags = MB_YESNO + MB_ICONQUESTION
 MsgBox msg$, mFlags, title$, answer
 If answer = IDNO then
 Quit All
 EndIf
Fend

A picture of the message box that this code will create is shown below.

MyTask Function

262 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

MyTask Function

Returns the task number of the current program.

Syntax
MyTask

Return Values
The task number of the current task. Valid entries are integer numbers from 1 to 16.

Description
MyTask returns the task number of the current program with a numeral. The MyTask instruction is
inserted inside a specific program and when that program runs the MyTask function will return the
task number that the program is running in.

See Also
Xqt

MyTask Function Example
The following program switches On and Off the I/O ports from 1 to 8.

Function main
 Xqt 2, task 'Execute task 2.
 Xqt 3, task 'Execute task 3.
 Xqt 4, task 'Execute task 4.
 Xqt 5, task 'Execute task 5.
 Xqt 6, task 'Execute task 6.
 Xqt 7, task 'Execute task 7.
 Xqt 8, task 'Execute task 8.
 Call task
Fend

Function task
 Do
 On MyTask 'Switch On I/O port which has the
 'same number as current task number
 Off MyTask 'Switch Off I/O port which has the
 'same number as current task number
 Loop
Fend

F

Next Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 263

Next Statement

The For/Next instructions are used together to create a loop where instructions located
between the For and Next instructions are executed multiple times as specified by
the user.

Syntax
For var1 = initval To finalval [Step Increment]

statements
Next var1

Parameters
var1 The counting variable used with the For/Next loop. This variable is normally

defined as an integer but may also be defined as a Real variable.
initval The initial value for the counter var1.
finalval The final value of the counter var1. Once this value is met, the For/Next loop is

complete and execution continues starting with the statement following the Next
instruction.

Increment An optional parameter which defines the counting increment for each time the
Next statement is executed within the For/Next loop. T his variable may be
positive or negative. However, if the value is negative, the initial value of the
variable must be larger than the final value of the variable. If the increment value
is left out the system automatically increments by 1.

statements Any valid SPEL+ statements can be inserted inside the For/Next loop.

Return Values
None

Description
For/Next executes a set of statements within a loop a specified number of times. The beginning of
the loop is the For statement. The end of the loop is the Next statement. A variable is used to count
the number of times the statements inside the loop are executed.

The first numeric expression (initval) is the initial value of the counter. This value may be positive or
negative as long as the finalval variable and Step increment correspond correctly.

The second numeric expression (finalval) is the final value of the counter. This is the value which
once reached causes the For/Next loop to terminate and control of the program is passed on to the
next instruction following the Next instruction.

Program statements after the For statement are executed until a Next instruction is reached. The
counter variable (var1) is then incremented by the Step value defined by the increment parameter. If
the Step option is not used, the counter is incremented by one.

The counter variable (var1) is then compared with the final value (finalval). If the counter is less than
or equal to the final value (finalval), the statements following the For instruction are executed again. If
the counter variable is greater than the final value (finalval), execution branches outside of the
For/Next loop and continues with the instruction immediately following the Next instruction.

Nesting of For/Next statements is supported up to 10 levels deep. This means that a For/Next Loop
can be put inside of another For/Next loop and so on and so on until there are 10 "nests" of For/Next
loops.

> S

Next Statement

264 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Notes
Negative Step Values

If the value of the Step increment (increment) is negative, the counter variable (var1) is decremented
(decreased) each time through the loop and the initial value (initval) must be greater than the final
value (finalval) for the loop to work.

See Also

For

Next Statement Example

Function fornext
 Integer ctr
 For ctr = 1 to 10
 Go Pctr
 Next ctr
 '
 For ctr = 10 to 1 Step -1
 Go Pctr
 Next ctr
Fend

Not Operator

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 265

Not Operator

Performs the bitwise complement on the value of the operand.

Syntax
Not operand

Parameters
operand Integer expression.

Return Values
1’s complement of the value of the operand.

Description
The Not function performs the bitwise complement on the value of the operand. Each bit of the result
is the complement of the corresponding bit in the operand, effectively changing 0 bits to 1, and 1 bits
to 0.

See Also
Abs, And, Atan, Atan2, Cos, Int, LShift, Mod, Or, RShift, Sgn, Sin, Sqr, Str$, Tan, Val, Xor

Not Operator Example
This is a simple Command window example on the usage of the Not instruction.

>print not(1)
 -2
>

F

Off Statement

266 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Off Statement

Turns Off the specified output and after a specified time can turn it back on.

Syntax
Off { bitNumber | outputLabel }, [time], [parallel] [,Forced]

Parameters
bitNumber Integer expression representing which Output to turn Off.
outputLabel Output label.
time Optional. Specifies a time interval in seconds for the output to remain Off. After the time

interval expires, the Output is turned back on. The minimum time interval is 0.01
seconds and maximum time interval is 10 seconds.

parallel Optional. When a timer is set, the parallel parameter may be used to specify when the
next command executes:

0 - immediately after the output is turned off
1 - after the specified time interval elapses. (default value)

Forced Optional. Usually omitted.

Description
Off turns off (sets to 0) the specified output.

If the time interval parameter is specified, the output bit specified by bitNumber is switched off, and
then switched back on after the time interval elapses. If prior to executing Off, the Output bit was
already off, then it is switched On after the time interval elapses.

The parallel parameter settings are applicable when the time interval is specified as follows:
1: Switches the output off, switches it back on after specified interval elapses, then executes the next

command. (This is also the default value for the parallel parameter. If this parameter is omitted, this
is the same as setting the parameter to “1”.)

0: Switches the output off, and simultaneously executes the next command.

Notes
Output bits Configured as Remote Control output

If an output bit which was set up as a system output is specified, an error will occur. Remote control
output bits are turned on or off automatically according to system status.

Outputs and When an Emergency Stop Occurs:
EPSON RC+ has a feature which causes all outputs to go off when an E-Stop occurs. This feature is
set or disabled from Setup | Controller | Preferences.

Forced Flag
This flag is used to turn Off the I/O output at Emergency Stop and Safety Door Open from NoPause
task or NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt).
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the
system.

See Also

In, InBCD, MemOn, MemOff, MemOut, MemSw, OpBCD, Oport, Out, Wait

> S

Off Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 267

Off Statement Example
The example shown below shows main task start a background task called “iotask”. The “iotask” is a
simple task to turn discrete output bits 1 and 2 on and then off, Wait 10 seconds and then do it again.

Function main
 Xqt 2, iotask
 Go P1
 .
 .
 .
Fend

Function iotask
 Do
 On 1
 On 2
 Off 1
 Off 2
 Wait 10
 Loop
Fend

Other simple examples from the Command window are as follows:

> on 1
> off 1, 10 'Turn Output 1 off, wait 10 secs, turn on again
> on 2
> off 2

OLAccel Statement

268 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

OLAccel Statement

Sets up the automatic adjustment of acceleration/deceleration that is adjusted
according to the overload rating.

Syntax
OLAccel {On | Off}

Parameters
On | Off On: Enables the automatic adjustment of acceleration/deceleration that is adjusted

according to the overload rating.
 Off: Disables the automatic adjustment of acceleration/deceleration that is adjusted

according to the overload rating.

Description
OLAccel can be used to enable the automatic adjustment function of acceleration and deceleration
that is adjusted according to the robot loading rate (OLRate). When OLAccel is On, the acceleration
and deceleration are automatically adjusted in accordance with the robot loading rate at PTP motion
commands. This is done to prevent the over load error by reducing the acceleration/deceleration
automatically when the loading rate is exceeding a certain value at PTP motion. Heretofore, when
users were executing motion with heavy duty that may cause over load error, users had to stop the
robot by the program or adjust the speed and acceleration to prevent the error. OLAccel statement
lessens these measures. However, this statement do not prevent over load error at all types of cycles.
When the cycle has very heavy duty and load, the over load error may occur. In this case, users need
to stop the robot or adjust the speed and acceleration. In some operation environment, the motor
temperature may rise by operating the robot without over load error and result in over heat error.

This statement is unnecessary at proper load operation.
Use OLRate in the test cycle to check whether the over load error may occur or not.

The OLAccel value initializes to the default values (low acceleration) when any one of the following
conditions occurs:

Controller Power On
Motor On
SFree, SLock
Reset
Stop button or Ctrl + C Key

Notes
If OLAccel On is executed to a robot that does not support the automatic adjustment function of
acceleration and deceleration, an error occurs.

See Also

OLAccel Function, OLRate

> S

OLAccel Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 269

OLAccel Statement Example

>olrate on
>olrate
OLACCEL is ON

Function main
Motor On
Power High
Speed 100
Accel 100, 100
OLAccel On
Xqt 2, MonitorOLRate
Do
Jump P0
Jump P1

Loop
Fend

Function MonitorOLRate
Do
'Displays OLRate
OLRate
Wait 1

Loop
Fend

OLAccel Function

270 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

OLAccel Function

Returns the automatic adjustment setting.

Syntax
OLAccel

Return Values
Off = Automatic adjustment of acceleration/deceleration that is adjusted according to the overload

rating is disabled.
On = Automatic adjustment of acceleration/deceleration that is adjusted according to the overload

rating is enabled.

See Also
OLAccel, OLRate

OLAccel Function Example

If OLAccel = Off Then
 Print “OLAccel is off”
EndIf

F

OLRate Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 271

OLRate Statement

Display overload rating for one or all joints for the current robot.

Syntax
OLRate [jointNumber]

Parameters
jointNumber Integer expression whose value is between 1 and 6.

Description
OLRate can be used to check whether a cycle is causing stress on the servo system. Factors such as
temperature and current can cause servo errors during applications with high duty cycles. OLRate
can help to check if the robot system is close to having a servo error.

During a cycle, run another task to command OLRate. If OLRate exceeds 1.0 for any joint, then a
servo error will occur.

Servo errors are more likely to occur with heavy payloads. By using OLRate during a test cycle, you
can help insure that the speed and acceleration settings will not cause a servo error during production
cycling.

To get valid readings, you must execute OLRate while the robot is moving.

See Also
OLRate Function

OLRate Statement Example

>olrate
0.10000 0.20000
0.30000 0.40000
0.50000 0.60000

Function main
 Power High
 Speed 50
 Accel 50, 50
 Xqt 2, MonitorOLRate
 Do
 Jump P0
 Jump P1
 Loop
Fend

Function MonitorOLRate
 Do
 OLRate ' Display OLRate
 Wait 1
 Loop
Fend

>

S

OLRate Function

272 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

OLRate Function

Returns overload rating for one joint for the current robot.

Syntax
OLRate(jointNumber)

Parameters
jointNumber Integer expression whose value is between 1 and 6.

Return Values
Returns the OLRate for the specified joint. Values are between 0.0 and 2.0.

Description
OLRate can be used to check whether a cycle is causing stress on the servo system. Factors such as
temperature and current can cause servo errors during applications with high duty cycles. OLRate
can help to check if the robot system is close to having a servo error.

During a cycle, run another task to command OLRate. If OLRate exceeds 1.0 for any joint, then a
servo error will occur.

Servo errors are more likely to occur with heavy payloads. By using OLRate during a test cycle, you
can help insure that the speed and acceleration settings will not cause a servo error during production
cycling.

To get valid readings, you must execute OLRate while the robot is moving.

See Also
OLRate Statement

OLRate Function Example

Function main
 Power High
 Speed 50
 Accel 50, 50
 Xqt 2, MonitorOLRate
 Do
 Jump P0
 Jump P1
 Loop
Fend

Function MonitorOLRate
 Integer i
 Real olRates(4)
 Do
 For i = 1 to 4
 olRates(i) = OLRate(i)
 If olRate(i) > .5 Then
 Print "Warning: OLRate(", i, ") is over .5"
 EndIf
 Next i
 Loop
Fend

F

On Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 273

On Statement

Turns on the specified output and after a specified time can turn it back off.

Syntax
On { bitNumber | outputLabel }, [time], [parallel] [,Forced]

Parameters
bitNumber Integer expression representing which Output to turn On.
outputLabel Output label.
time Optional. Specifies a time interval in seconds for the output to remain On. After the time

interval expires, the Output is turned back off. (Minimum time interval is 0.01 seconds)
parallel Optional. When a timer is set, the parallel parameter may be used to specify when the

next command executes:
0 - immediately after the output is turned on
1 - after the specified time interval elapses. (default value)

Forced Optional. Usually omitted.

Description
On turns On (sets to 1) the specified output.
If the time interval parameter is specified, the output bit specified by outnum is switched On, and then
switched back Off after the time interval elapses.

The parallel parameter settings are applicable when the time interval is specified as follows:
1: Switches the output On, switches it back Off after specified interval elapses, then executes the next
command. (This is also the default value for the parallel parameter. If this parameter is omitted, this is
the same as setting the parameter to “1”.)
0: Switches the output On, and simultaneously executes the next command.

Notes
Output bits Configured as remote

If an output bit which was set up as remote is specified, an error will occur. Remote output bits are
turned On or Off automatically according to system status. For more information regarding remote,
refer to the EPSON RC+ User's Guide. The individual bits for the remote connector can be set as
remote or I/O from the EPSON RC+ remote configuration dialog accessible from the setup menu.

Outputs and When an Emergency Stop Occurs
The Controller has a feature which causes all outputs to go off when an E-Stop occurs. This feature is
set or disabled from one of the Option Switches. To configure this go to the Setup | Controller |
Preferences.

Forced Flag
This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause
task or NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt).
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the
system.

See Also

In, InBCD, MemOff, MemOn, Off, OpBCD, Oport, Out, Wait

> S

On Statement

274 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

On Statement Example
The example shown below shows main task start a background task called “iotask”. The “iotask” is a
simple task to turn discrete output bits 1 and 2 on and then off, Wait 10 seconds and then do it again.

Function main
 Xqt iotask
 Go P1
 .
 .
 .
Fend

Function iotask
 Do
 On 1
 On 2
 Off 1
 Off 2
 Wait 10
 Loop
Fend

Other simple examples from the command window are as follows:

> on 1
> off 1, 10 'Turn Output 1 off, wait 10 secs, turn on again
> on 2
> off 2

OnErr Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 275

OnErr Statement

Sets up interrupt branching to cause control to transfer to an error handing subroutine when
an error occurs. Allows users to perform error handling.

Syntax
OnErr GoTo {label | 0}

Parameters
label Statement label to jump to when an error occurs.
0 Parameter used to clear OnErr setting.

Description

OnErr enables user error handling. When an error occurs without OnErr being used, the task is
terminated and the error is displayed. However, when OnErr is used it allows the user to "catch" the
error and go to an error handler to automatically recover from the error. Upon receiving an error,
OnErr branches control to the designated label specified in the EResume instruction. In this way the
task is not terminated and the user is given the capability to automatically handle the error. This
makes work cells run much smoother since potential problems are always handled and recovered from
in the same fashion.

When the OnErr command is specified with the “0” parameter, the current OnErr setting is cleared.
(i.e. After executing OnErr 0, if an error occurs program execution will stop)

See Also

Err, EResume

OnErr Statement Example

The following example shows a simple utility program which checks whether points P0-P399 exist. If
the point does not exist, then a message is printed on the screen to let the user know this point does
not exist. The program uses the CX instruction to test each point for whether or not it has been
defined. When a point is not defined control is transferred to the error handler and a message is
printed on the screen to tell the user which point was undefined.

Function errDemo
 Integer i, errNum

 OnErr GoTo errHandler

 For i = 0 To 399
 temp = CX(P(i))
 Next i
 Exit Function
 '
 '
 '***
 '* Error Handler *
 '***
errHandler:
 errNum = Err
 ' Check if using undefined point
 If errNum = 7007 Then
 Print "Point number P", i, " is undefined!"
 Else
 Print "ERROR: Error number ", errNum, " occurred while"
 Print " trying to process point P", i, " !"
 EndIf
 EResume Next
Fend

S

OpBCD Statement

276 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

OpBCD Statement

Simultaneously sets 8 output lines using BCD format. (Binary Coded Decimal)

Syntax
OpBCD portNumber, outData [,Forced]

Parameters
portNumber Integer expression representing I/O output bytes. Where the portNumber selection

corresponds to the following outputs:
PortNumber Outputs

0 0-7
1 8-15
2 16-23
3 24-31
... ...

outData Integer expression between 0 and 99 representing the output pattern for the output

group selected by portNumber. The 2nd digit (called the 1's digit) represents the lower
4 outputs in the selected group and the 1st digit (called the 10's digit) represents the
upper 4 outputs in the selected group.

Forced Optional. Usually omitted.

Description
OpBCD simultaneously sets 8 output lines using the BCD format. The standard and expansion user
outputs are broken into groups of 8. The portNumber parameter for the OpBCD instruction defines
which group of 8 outputs to use where portNumber = 0 means outputs 0 to 7, portNumber = 1 means
outputs 8 to 15, etc..

Once a port number is selected (i.e. a group of 8 outputs has be selected), a specific output pattern
must be defined. This is done in Binary Coded Decimal format using the outdata parameter. The
outdata parameter may have 1 or 2 digits. (Valid entries range from 0 to 99.) The 1st digit (or 10's
digit) corresponds to the upper 4 outputs of the group of 8 outputs selected by portNumber. The 2nd
digit (or 1's digit) corresponds to the lower 4 outputs of the group of 8 outputs selected by portNumber.

Since valid entries in BCD format range from 0 to 9 for each digit, every I/O combination cannot be
met. The table below shows some of the possible I/O combinations and their associated outnum
values assuming that portNumber is 0.

Output Settings (Output number)
Outnum Value 7 6 5 4 3 2 1 0

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 On Off Off On On Off Off On

Notice that the Binary Coded Decimal format only allows decimal values to be specified. This means
that through using Binary Coded Decimal format it is impossible to turn on all outputs with the OpBCD
instruction. Please note that the maximum value for either digit for outnum is “9”. This means that the
largest value possible to use with OpBCD is “99”. In the table above it is easy to see that “99” does not
turn all Outputs on. Instead it turns outputs 0, 3, 4, and 7 On and all the others off.

> S

OpBCD Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 277

Notes
Difference between OpBCD and Out

The OpBCD and Out instructions are very similar in the SPEL+ language. However, there is one
major difference between the two. This difference is shown below:
- The OpBCD instruction uses the Binary Coded Decimal format for specifying an 8 bit value to use

for turning the outputs on or off. Since Binary Coded Decimal format precludes the values of &HA,
&HB, &HC, &HD, &HE or &HF from being used, all combinations for setting the 8 output group
cannot be satisfied.

- The Out instruction works very similarly to the OpBCD instruction except that Out allows the range
for the 8 bit value to use for turning outputs on or off to be between 0 and 255 (0 to 99 for OpBCD).
This allows all possible combinations for the 8 bit output groups to be initiated according to the users
specifications.

Output bits Configured as Remote:
If an output bit which was set up as remote is specified to be turned on by OpBCD, an error will occur.
Remote output bits are turned On or Off automatically according to system status. For more
information regarding remote, refer to the EPSON RC+ User's Guide. The individual bits for the
remote connector can be set as remote or I/O from the EPSON RC+ remote configuration dialog
accessible from the setup menu.

Outputs and When an Emergency Stop Occurs:
The Controller has a feature which causes all outputs to go off when an E-Stop occurs. This feature is
set or disabled from one of the Option Switches. To configure this go to Setup | Controller |
Preferences.

Forced Flag
This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause
task or NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt).
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the
system.

See Also

In, InBCD, MemOff, MemOn, MemSw, Off, On, Oport, Out, Sw, Wait

OpBCD Function Example
The example shown below shows main task start a background task called “iotask”. The “iotask” is a
simple task to flip flop between turning outputs 1 & 2 on and then outputs 0 and 3 on. When 1 & 2 are
turned on, then 0 & 3 are also turned off and vice versa.

Function main
 Xqt 2, iotask
 Go P1
 .
 .
Fend

Function iotask
 Do
 OpBCD 0, 6
 OpBCD 0, 9
 Wait 10
 Loop
Fend

Other simple examples from the command window are as follows:

> OpBCD 1,6 'Turns on Outputs 1 and 2
> OpBCD 2,1 'Turns on Output 8
> OpBCD 3, 91 'Turns on Output 24, 28, and 31

OpenCom Statement

278 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

OpenCom Statement

Open an RS-232 communication port.

Syntax
OpenCom #portNumber

Parameters
portNumber Integer expression for port number to open.

Description
The specified RS-232 port must be installed on the controller.

See Also
ChkCom, CloseCom, SetCom

OpenCom Statement Example

OpenCom #1

S

OpenNet Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 279

OpenNet Statement

Open a TCP/IP network port.

Syntax
OpenNet #portNumber As { Client | Server }

Parameters
portNumber Integer expression for port number to open. Range is from 201 to 208.

Description
OpenNet opens a TCP/IP port for communication with another computer on the network.

One system should open as Server and the other as Client. It does not matter which one executes
first.

See Also
ChkNet, CloseNet, SetNet

OpenNet Statement Example
For this example, two controllers have their TCP/IP settings configured as follows:

Controller #1:
Port: #201
Host Name: 192.168.0.2
TCP/IP Port: 1000

Function tcpip
 OpenNet #201 As Server
 WaitNet #201
 Print #201, "Data from host 1"
Fend

Controller #2:
Port: #201
Host Name: 192.168.0.1
TCP/IP Port: 1000

Function tcpip
 String data$
 OpenNet #201 As Client
 WaitNet #201
 Input #201, data$
 Print "received '", data$, "' from host 1"
Fend

S

Oport Function

280 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Oport Function

Returns the state of the specified output.

Syntax
Oport(outnum)

Parameters
outnum Integer expression representing I/O output bits.

Return Values
Returns the specified output bit status as either 0 or 1.

0: Off status
1: On status

Description
Oport provides a status check for the outputs. It functions much in the same way as the Sw
instruction does for inputs. Oport is most commonly used to check the status of one of the outputs
which could be connected to a feeder, conveyor, gripper solenoid, or a host of other devices which
works via discrete I/O. Obviously the output checked with the Oport instruction has 2 states (1 or 0).
These indicate whether the specified output is On or Off.

Notes
Difference between Oport and Sw

It is very important for the user to understand the difference between the Oport and Sw instructions.
Both instructions are used to get the status of I/O. However, the type of I/O is different between the
two. The Sw instruction works inputs. The Oport instruction works with the standard and expansion
hardware outputs. These hardware ports are discrete outputs which interact with devices external to
the controller.

See Also

In, InBCD, MemIn, MemOn, MemOff, MemOut, MemSw, Off, On, OpBCD, Out, Sw, Wait

F

Oport Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 281

OPort Function Example
The example shown below turns on output 5, then checks to make sure it is on before continuing.

Function main
 TMOut 10
 OnErr errchk
 Integer errnum
 On 5 'Turn on output 5
 Wait Oport(5)
 Call mkpart1
 Exit Function

errchk:
 errnum = Err(0)
 If errnum = 94 Then
 Print "TIME Out Error Occurred during period"
 Print "waiting for Oport to come on. Check"
 Print "Output #5 for proper operation. Then"
 Print "restart this program."
 Else
 Print "ERROR number ", errnum, "Occurred"
 Print "Program stopped due to errors!"
 EndIf
 Exit Function
Fend

Other simple examples are as follows from the command window:

> On 1
> Print Oport(1)
1
> Off 1
> Print Oport(1)
0
>

Or Operator

282 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Or Operator

Performs a bitwise or logical OR operation on two operands.

Syntax
expr1 Or expr2

Parameters
expr1, exrp2 Integer or Boolean expressions.

Return Values
Bitwise OR value of the operands if the expressions are integers. Logical OR if the expressions are
Boolean.

Description
For integer expressions, the Or operator performs the bitwise OR operation on the values of the
operands. Each bit of the result is 1 if one or both of the corresponding bits of the two operands is 1.
For Boolean expressions, the result is True if either of the expressions evaluates to True.

See Also
And, LShift, Mod, Not, RShift, Xor

Or Operator Example
Here is an example of a bitwise OR.

>print 1 or 2
 3

Here is an example of a logical OR.

If a = 1 Or b = 2 Then

c = 3
EndIf

Out Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 283

Out Statement

Simultaneously sets 8 output bits.

Syntax
Out portNumber, outData [,Forced]

Parameters
portNumber Integer expression representing I/O output bytes. The portnum selection corresponds to

the following outputs:
Portnum Outputs

0 0-7
1 8-15
... ...

outData Integer number between 0 and 255 representing the output pattern for the output group

selected by portNumber. If represented in hexadecimal form the range is from &H0 to
&HFF. The lower digit represents the least significant digits (or the 1st 4 outputs) and the
upper digit represents the most significant digits (or the 2nd 4 outputs).

Forced Optional. Usually omitted.

Description
Out simultaneously sets 8 output lines using the combination of the portNumber and outdata values
specified by the user to determine which outputs will be set. The portNumber parameter defines
which group of 8 outputs to use where portNumber = 0 means outputs 0 to 7, portNumber = 1 means
outputs 8 to 15, etc..

Once a portnum is selected (i.e. a group of 8 outputs has be selected), a specific output pattern must
be defined. This is done using the outData parameter. The outData parameter may have a value
from 0 to 255 and may be represented in Hexadecimal or Integer format. (i.e. &H0 to &HFF or 0 to
255)

The table below shows some of the possible I/O combinations and their associated outData values
assuming that portNumber is “0”, and “1” accordingly.

Output Settings When portNumber=0 (Output number)
OutData Value 7 6 5 4 3 2 1 0

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 Off On On Off Off Off On On
255 On On On On On On On On

> S

Out Statement

284 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Output Settings When portNumber=1 (Output number)
OutData Value 15 14 13 12 11 10 9 8

01 Off Off Off Off Off Off Off On
02 Off Off Off Off Off Off On Off
03 Off Off Off Off Off Off On On
08 Off Off Off Off On Off Off Off
09 Off Off Off Off On Off Off On
10 Off Off Off On Off Off Off Off
11 Off Off Off On Off Off Off On
99 Off On On Off Off Off On On
255 On On On On On On On On

Notes
Difference between OpBCD and Out

The Out and OpBCD instructions are very similar in the SPEL+ language. However, there is one major
difference between the two. This difference is shown below:
- The OpBCD instruction uses the Binary Coded Decimal format for specifying 8 bit value to use for
turning the outputs on or off. Since Binary Coded Decimal format precludes the values of &HA, &HB,
&HC, &HD, &HE or &HF from being used, all combinations for setting the 8 output group cannot be
satisfied.

- The Out instruction works very similarly to the OpBCD instruction except that Out allows the range
for the 8 bit value to use for turning outputs on or off to be between 0 and 255 (0 to 99 for OpBCD).
This allows all possible combinations for the 8 bit output groups to be initiated according to the users
specifications.

Forced Flag
This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause
task or NoEmgAbort task (special task using NoPause or NoEmgAbort at Xqt).
Be sure that the I/O outputs change by Emergency Stop and Safety Door Open when designing the
system.

See Also

In, InBCD, MemOff, MemOn, MemOut, MemSw, Off, On, Oport, Sw, Wait

Out Statement Example

The example shown below shows main task start a background task called “iotask”. The “iotask” is a
simple task to flip flop between turning output bits 0 to 3 On and then Off. The Out instruction makes
this possible using only 1 command rather than turning each output On and Off individually.

Function main

 Xqt iotask
 Do
 Go P1
 Go P2
 Loop
Fend

Function iotask

 Do
 Out 0, &H0F
 Out 0, &H00
 Wait 10
 Loop
Fend

Out Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 285

Other simple examples from the command window are as follows:

> Out 1,6 'Turns on Outputs 9 & 10
> Out 2,1 'Turns on Output 8
> Out 3,91 'Turns on Outputs 24, 25, 27, 28, and 30

Out Function

286 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Out Function

Returns the status of one byte of outputs.

Syntax
Out(portNumber)

Parameters
portNumber Integer expression representing I/O output bytes. Where the portNumber

selection corresponds to the following outputs:
Portnum Outputs

0 0-7
1 8-15
... ...

Return Values

The output status 8 bit value for the specified port.

See Also
Out Statement

Out Function Example

Print Out(0)

F

OutReal Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 287

OutReal Statement

The output data of real value is the floating-point data (IEEE754 compliant) of 32 bits.
Set the status of output port 2 word (32 bits).

Syntax
OutReal WordPortNumber, OutputData [,Forced]

Parameters
WordPortNumber Integer expression representing I/O output words.
OutputData Specifies the integer expression representing the output data (Real type value).
Forced Optional. Normally omitted.

Description
Outputs the specified IEEE754 Real value to the output word port specified by word port number and
the following output word port.
Output word lable can be used for the word port number parameter.

Note
Forced Flag

This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause
task or NoEmgAbort task (special task initiated by specidying NoPause or NoEmgAbort at Xqt).

Carefully design the system because the I/O output changes by Emergency Stop and Safety Door
Open.

See Also
In, InW, InBCD, InReal, Out, OutW, OpBCD, OutReal Function

OutReal Statement Example

OutReal 0, 2.543

OutReal Function

288 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

OutReal Function

Retieve the output port status as the 32 bits floating-point data (IEEE754 compliant).

Syntax
OutReal (WordPortNumber)

Parameter
WordPortNumber Integer expression representing I/O output words.

Return Values
Returns the specified output port status in 32 bits floating-point data (IEEE754 compliant).

See Also
In, InW, InBCD, InReal, Out, OutW, OpBCD, OutReal

OutReal Function Example

Real rdata01

rdata01 = OutReal(0)

F

OutW Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 289

OutW Statement

Simultaneously sets 16 output bits.

Syntax
OutW wordPortNum, outputData [,Forced]

Parameters
wordPortNum Integer expression representing I/O output words.
outputData Specifies output data (integers from 0 to 65535) using an expression or numeric

value.
Forced Optional. Usually omitted.

Description
Changes the current status of user I/O output port group specified by the word port number to the
specified output data.

Note
Forced Flag

This flag is used to turn On the I/O output at Emergency Stop and Safety Door Open from NoPause
task or NoEmgAbort task (special task initiated by specidying NoPause or NoEmgAbort at Xqt).

Carefully design the system because the I/O output changes by Emergency Stop and Safety Door
Open.

See Also
In, InW, InBCD, InReal, Out, OpBCD, OutReal

OutW Statement Example

OutW 0, 25

OutW Function

290 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

OutW Function

Returns the status of one word (2 bytes) of outputs.

Syntax
OutW(wordPortNum)

Parameters
wordPortNum Integer expression representing I/O output words.

Return Values
The output status 16 bit value for the specified port.

See Also
In, InW, InBCD, InReal, Out, OutW, OpBCD, OutReal

OutW Function Example

Long wdata01

wdata01 = OutW(0)

F

PAgl Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 291

PAgl Function

Return a joint value from a specified point.

Syntax
PAgl (point, jointNumber)

Parameters
point Point expression.
jointNumber Specifies the joint number (integer from 1 to 6) using an expression or numeric

value.

Return Values
Returns the calculated joint position (real value, deg for rotary joint, mm for prismatic joint).

See Also
Agl, CX, CY, CZ, CU, CV, CW, PPls

PAgl Function Example

Real joint1

joint1 = PAgl(P10, 1)

F

Pallet Statement

292 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Pallet Statement

Defines and displays pallets.

Syntax
Pallet [Outside,] [palletNumber, Pi, Pj, Pk [,Pm], columns, rows]

Parameters
Outside Optional. Allow row and column indexes outside of the range of the specified

rows and columns. Range is from -32768 to 32767.
palletNumber Pallet number represented by an integer number from 0 to 15.
Pi, Pj, Pk Point variables which define standard 3 point pallet position.
Pm Optional. Point variable which is used with Pi, Pj and Pk to define 4 point pallet.
columns Integer expression representing the number of points on the Pi-to-Pj side of the

pallet. Range is from 1 to 32767.
rows Integer expression representing the number of points on the Pi-to-Pk side of the

pallet. Range is from 1 to 32767.

Return Values
Displays all defined pallets when parameters are omitted.

Description
Defines a pallet by teaching the robot, as a minimum, points Pi, Pj and Pk and by specifying the
number of points from Pi to Pj and from Pi to Pk.

If the pallet is a well ordered rectangular shape, only 3 of the 4 corner points need to be specified.
However, in most situations it is better to use 4 corner points for defining a pallet.

To define a pallet, first teach the robot either 3 or 4 corner points, then define the pallet as follows:
A pallet defined with 4 points: P1, P2, P3 and P4 is shown below. There are 3 positions from P1-P2
and 4 positions from P1-P3. This makes a pallet which has 12 positions total. To define this pallet the
syntax is as follows:

Points that
represent
divisions of a
pallet are
automatically
assigned
division
numbers,
which, in this example, begin at P1. These division numbers are also required by the Pallet Function.

When Outside is specified, row and column indexes outside of the range of rows and columns can be
specified. The Outside should be specified by two-dimensional division.

Pallet 1, P1, P2, P3, P4, 3, 4

P1

P3

P2

1 2 3

7 8 9

4 5 6

10 11 12

P4

> S

Pallet Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 293

For example:

Pallet Outside 1, P1, P2, P3, 4, 5
Jump Pallet(1, -2, 10)

-2,10

 1,5 2,5 3,5 4,5
 1,4 2,4 3,4 4,4

 1,3 2,3 3,3 4,3

 1,2 2,2 3,2 4,2

 1,1 2,1 3,1 4,1

Sample

 1,6 4,6

-1,4 1,4 2,4 3,4 4,4 6,4

 1,3 2,3 3,3 4,3

 1,2 2,2 3,2 4,2

-1,1 1,1 2,1 3,1 4,1 6,1

 1,-1 4,-1

Notes
The Maximum Pallet Size

The total number of points defined by a specific pallet must be less than 32,767.

Incorrect Pallet Shape Definitions
Be aware that incorrect order of points or incorrect number of divisions between points will result in an
incorrect pallet shape definition.

Pallet Plane Definition
The pallet plane is defined by the Z axis coordinate values of the 3 corner points of the pallet.
Therefore, a vertical pallet could also be defined.

Pallet Statement

294 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Pallet Definition for a Single Row Pallet
A single row pallet can be defined with a 3 point Pallet statement or command. Simply teach a point
at each end and define as follows: Specify 1 as the number of divisions between the same point.
> Pallet 2, P20, P21, P20, 5, 1 'Defines a 5×1 pallet

See Also

Pallet Function

Pallet Statement Example
The following instruction from the command window sets the pallet defined by P1, P2 and P3 points,
and divides the pallet plane into 15 equally distributed pallet point positions, with the pallet point
number 1, the pallet point number 2 and the pallet point number 3 sitting along the P1-to-P2 side.

> pallet 1, P1, P2, P3, 3, 5
> jump pallet(1, 2) 'Jump to position on pallet

The resulting Pallet is shown below:

 P3

13 14 15

10 11 12

7 8 9

4 5 6

1 2 3
 P1 P2

Pallet Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 295

Pallet Function

Specifies a position in a previously defined pallet.

Syntax
(1) Pallet (palletNumber, palletPosition)
(2) Pallet (palletNumber, column, row)

Parameters
palletNumber Pallet number represented by integer expression from 0 to 15.
PalletPosition The pallet position represented by an integer from 1 to 32767.
column The pallet column represented by an integer expression from -32768 to 32767.
row The pallet row represented by an integer expression from -32768 to 32767.

Description
Pallet returns a position in a pallet which was previously defined by the Pallet statement. Use this
function with the Go or the Jump instruction to cause the arm to move the specified pallet position.

The pallet position number can be defined arithmetically or simply by using an integer.

Notes
Pallet Motion of 6-axis Robot

When the 6-axis robot moves to a point calculated by such as pallet or relative offsets, the wrist part
may rotate to an unintended direction. The point calculation above does not depend on robot models
and results in motion without converting the required point flag.
LJM function prevents the unintended wrist rotation.

Pallet Motion of RS series
In the same way as the 6-axis, when the RS series robot moves to a point calculated by such as pallet
or relative offsets, Arm #1 may rotate to an unintended direction. LJM function can be used to convert
the point flag to prevent the unintended rotation of Arm #1.
In addition, the U axis of RS series may go out of the motion range when the orientation flag is
converted, and it causes an error.
To prevent this error, LJM function adjusts the U axis target angle to inside the motion range. It is
available when the orientation flag “2” is selected.

See Also

LJM, Pallet
Pallet Function Example

The following program transfers parts from pallet 1 to pallet 2.

Function main
 Integer index
 Pallet 1, P1, P2, P3, 3, 5 'Define pallet 1
 Pallet 2, P12, P13, P11, 5, 3 'Define pallet 2
 For index = 1 To 15
 Jump Pallet(1, index) 'Move to point index on pallet 1
 On 1 'Hold the work piece
 Wait 0.5
 Jump Pallet(2, index) 'Move to point index on pallet 2
 Off 1 'Release the work piece
 Wait 0.5
 Next I
Fend

F

Pallet Function

296 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Function main
 Integer i, j

 P0 = XY(300, 300, 300, 90, 0, 180)
 P1 = XY(200, 280, 150, 90, 0, 180)
 P2 = XY(200, 330, 150, 90, 0, 180)
 P3 = XY(-200, 280, 150, 90, 0, 180)

 Pallet 1, P1, P2, P3, 10, 10

 Motor On
 Power High
 Speed 50; Accel 50, 50
 SpeedS 1000; AccelS 5000

 Go P0
 P11 = P0 -TLZ(50)

 For i = 1 To 10
 For j = 1 To 10
 'Specify points
 P10 = P11 'Depart point
 P12 = Pallet(1, i, j) 'Target point
 P11 = P12 -TLZ(50) 'Start approach point
 'Converting each point to LJM
 P10 = LJM(P10)
 P11 = LJM(P11, P10)
 P12 = LJM(P12, P11)
 'Execute motion
 Jump3 P10, P11, P12 C0
 Next
 Next
Fend

Function main2
 P0 = XY(300, 300, 300, 90, 0, 180)
 P1 = XY(400, 0, 150, 90, 0, 180)
 P2 = XY(400, 500, 150, 90, 0, 180)
 P3 = XY(-400, 0, 150, 90, 0, 180)
 Pallet 1, P1, P2, P3, 10, 10

 Motor On
 Power High
 Speed 50; Accel 50, 50
 SpeedS 1000; AccelS 5000

 Go P0

 Do
 ' Specify points
 P10 = Here -TLZ(50) 'Depart point
 P12 = Pallet(1, Int(Rnd(9)) + 1, Int(Rnd(9)) + 1) 'Target point
 P11 = P12 -TLZ(50) 'Start approach point

 If TargetOK(P11) And TargetOK(P12) Then 'Point chaeck
 ' Converting each point to LJM
 P10 = LJM(P10)
 P11 = LJM(P11, P10)
 P12 = LJM(P12, P11)
 'Execute motion
 Jump3 P10, P11, P12 C0
 EndIf
 Loop
Fend

ParseStr Statement / Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 297

ParseStr Statement / Function

Parse a string and return array of tokens.

Syntax
ParseStr inputString$, tokens$(), delimiters$
numTokens = ParseStr(inputString$, tokens$(), delimiters$)

Parameters
inputString$ String expression to be parsed.
tokens$() Output array of strings containing the tokens.

The array declared by ByRef cannot be specified.
delimiters$ String expression containing one or more token delimiters.

Return Values
When used as a function, the number of tokens parsed is returned.

See Also
Redim, String

ParseStr Statement Example

String toks$(0)
Integer i

ParseStr "1 2 3 4", toks$(), " "

For i = 0 To UBound(toks)
 Print "token ", i, " = ", toks$(i)
Next i

S F

Pass Statement

298 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Pass Statement

Executes simultaneous four joint Point to Point motion, passing near but not through
the specified points.

Syntax
Pass point [, {On | Off | MemOn | MemOff} bitNumber [, point ...]] [LJM [orientationFlag]]

Parameters
point Pnumber or P(expr) or point label.

When the point data is continued and in the ascending order or the descending
order, specify two point numbers binding with colon as P(1:5).

bitNumber The I/O output bit or memory I/O bit to turn on or off. Integer number between 0 -
511 or output label.

LJM Optional. Convert the depart point, approach point, and target destination using
LJM function.

orientationFlag Optional. Specifies a parameter that selects an orientation flag for LJM function.

Description
Pass moves the robot arm near but not through the specified point series.

To specify a point series, use points (P0,P1, ...) with commas between points.

To turn output bits on or off while executing motion, insert an On or Off command delimited with
commas between points. The On or Off is executed before the robot reaches the point immediately
preceding the On or Off.

If Pass is immediately followed by another Pass, control passes to the following Pass without the
robot stopping at the preceding Pass final specified point.

If Pass is immediately followed by a motion command other than another Pass, the robot stops at the
preceding Pass final specified point, but Fine positioning will not be executed.

If Pass is immediately followed by a command, statement, or function other than a motion command,
the immediately following command, statement or function will be executed prior to the robot reaching
the final point of the preceding Pass.

If Fine positioning at the target position is desired, follow the Pass with a Go, specifying the target
position as shown in the following example:

Pass P5; Go P5; On 1; Move P10

The larger the acceleration / deceleration values, the nearer the arm moves toward the specified point.
The Pass instruction can be used such that the robot arm avoids obstacles.

With LJM parameter, the program using LJM function can be more simple.
For example, the following four-line program

P11 = LJM(P1, Here, 1)
P12 = LJM(P2, P11, 1)
P13 = LJM(P3, P12, 1)
Pass P11, P12, P13

can be… one-line program.
 Pass P1, P2, P3 LJM 1
LJM parameter is available for 6-axis and RS series robots.
When using orientationFlag with the default value, it can be omitted.
 Pass P1, P2, P3 LJM

> S

Pass Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 299

See Also
Accel, Go, Jump, Speed

Pass Statement Example

The example shows the robot arm manipulation by Pass instruction:

Function main
 Jump P1
 Pass P2 'Move the arm toward P2, and perform
 'the next instruction before reaching P2.
 On 2
 Pass P3
 Pass P4
 Off 0
 Pass P5
Fend

Pause Statement

300 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Pause Statement

Temporarily stops program execution all tasks for which pause is enabled.

Syntax
Pause

Description
When the Pause instruction is executed, program execution for all tasks with pause enabled (tasks
that do not use NoPause or NoEmgAbort in Xqt command) is suspended. Also, if any task is
executing a motion statement, it will be paused even if pause is not enabled for that task.

Notes
QP and its Affect on Pause

The QP instruction is used to cause the arm to stop immediately upon Pause or to complete the
current move and then Pause the program. See the QP instruction help for more information.

Pause Statement Example

The example below shows the use of the Pause instruction to temporarily stop execution. The task
executes program statements until the line containing the Pause command. At that point the task is
paused. The user can then click the Run Window Continue Button to resume execution.

Function main

 Xqt monitor
 Go P1
 On 1
 Jump P2
 Off 1
 Pause 'Suspend program execution
 Go P40
 Jump P50
Fend

S

PauseOn Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 301

PauseOn Function

Returns the pause status.

Syntax
PauseOn

Return Values
True if the status is pause, otherwise False.

Description
PuseOn function is used only for NoPause and NoEmgAbort task (special task using NoPause or
NoEmgAbort at Xqt).

See Also
ErrorOn, EstopOn, SafetyOn, Wait, Xqt

PauseOn Function Example
The following example shows a program that monitors the controller pause and switches the I/O
On/Off when pause occurs. However, when the status changes to pause by Safety Door open, the I/O
does not turn On/Off.

Function main

 Xqt PauseMonitor, NoPause
 :
 :
Fend

Function PauseMonitor
 Boolean IsPause
 IsPause = False
 Do
 Wait 0.1
 If SafetyOn = On Then
 If IsPause = False Then
 Print "Saftey On"
 IsPause = True
 EndIf
 ElseIf PauseOn = On Then
 If IsPause = False Then
 Print "InPause"
 If SafetyOn = Off Then
 Off 10
 On 12
 EndIf
 IsPause = True
 EndIf
 Else
 If IsPause = True Then
 Print "OutPause"
 On 10
 Off 12
 IsPause = False
 EndIf
 EndIf
 Loop

Fend

F

PDef Function

302 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

PDef Function

Returns the definition status of a specified point.

Syntax
PDef (point)

Parameters
point An integer value or Pnumber or P(expr) or point label.

Cautions for compatibility
No variables can be specified for point parameter
To use variables, write PDef(P(varName)).

Return Values

True if the point is defined, otherwise False.

See Also
Here Statement, Pdel

PDef Function Example

If Not PDef(1) Then
 Here P1
Endif

F

PDel Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 303

PDel Statement

Deletes specified position data.

Syntax
PDel firstPointNum , [lastPointNum]

Parameters
firstPointNum The first point number in a sequence of points to delete. firstPointNum must be

an integer.
lastPointNum The last point number in a sequence of points to delete. lastPointNum must be

an integer.

Description
Deletes specified position data from the controller's point memory for the current robot. Deletes all
position data from firstPointNum up to and including lastPointNum. To prevent Error 2 from occurring,
firstPointNum must be less than lastPointNum.

PDel Statement Example

> p1=10,300,-10,0/L
> p2=0,300,-40,0
> p10=-50,350,0,0
> pdel 1,2 'Delete points 1 and 2
> plist
P10 = -50.000, 350.000, 0.000, 0.000 /R /0
> pdel 50 'Delete point 50
> pdel 100,200 'Delete from point 100 to point 200
>

>

PLabel Statement

304 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

PLabel Statement

Defines a label for a specified point.

Syntax
PLabel pointNumber, newLabel

Parameters
pointNumber An integer expression representing a point number.
newLabel A string expression representing the label to use for the specified point.

See Also
PDef Function, PLabel$ Function, PNumber Function

PLabel Statement Example

PLabel 1, "pick"

> S

PLabel$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 305

PLabel$ Function

Returns the point label associated with a point number.

Syntax
PLabel$(point)

Parameters
point An integer value or Pnumber or P(expr) or point label.

Cautions for compatibility
No variables can be specified for point parameter
To use variables, write PLabel$(P(varName)).

See Also

PDef Function, PLabel, PNumber Function

PLabel$ Function Example

Print PLabel$(1)
Print PLabel$(P(i))

F

Plane Statement

306 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Plane Statement

Specifies and displays the approach check plane.

Syntax
(1) Plane PlaneNum, pCoordinateData
(2) Plane PlaneNum, pOrigin, pXaxis, pYaxis
(3) Plane PlaneNum
(4) Plane

Parameters
PlaneNum Integer expression representing the plane number from 1 to 15.
pCoordinateData Point data representing the coordinate data of the approach check plane.
pOrigin Integer expression representing the origin point using the robot coordinate

system.
pXaxis Integer expression representing a point along the X axis using the robot

coordinate system if X alignment is specified.
pYaxis Integer expression representing a point along the Y axis using the robot

coordinate system if Y alignment is specified.

Return Values
When only PlaneNum is specified, the plane setting of the specified plane is displayed. When all the
parameters are omitted, the plane settings for all plane numbers are displayed.

Description

Plane is used to set the approach check plane. The approach check plane is for checking whether
the robot end effector is in one of the two areas devided by the specified approach check plane. The
position of the end effector is calculated by the current tool. The approach check plane is set using
the XY plane of the base coordinate system. The approach check plane detects the end effector
when it approaches the area on the + Z side of the the approach check plane.

When the approach check plane is used, the system detects approaches in any motor power status
during the controller is ON.

The details of each syntax are as follows.

(1) Specifies a coordinate system to create the approach check plane using the point data

representing the translation and rotation based on the base coordinate system, and sets the
approach check plane.

Example:

Plane 1, XY(x, y, z, u, v, w)
Plane 1, P1

(2) Defines the approach check plane (XP coordinate) by specifying the orgin point, point along the X

axis, and point along the Y axis. Uses the X, Y, Z coordinates and ignores U, V, W coordinates.
Calculates the Z axis in righty and sets the approach checking direction.

Example:

Plane 1, P1, P2, P3

(3) Displays the setting of the specified approach check plane.

(4) Displays all the approach check plane.

> S

Plane Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 307

You can use InsidePlane function to get the result of the approach check plane. InsidePlane can be
used for wait condition of Wait command. You can provide the detection result to the I/O by setting
the remote output setting.

Robot

Coordinate system of
approach check plane

Approach check plane

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Notes
Tool Selection

The approach check is executed for the current tool. When you change the tool, the approach check
may display the tool approach from inside to outside of the plane or the other way although the robot
is not operating.

See Also

Box, InsidePlane, PlaneClr, PlaneDef

Tip
Set Plane statement from Robot Manager

EPSON RC+ has a point and click dialog box for defining the approach check plane. The simplest
method to set the Plane values is by using the Plane page on the Robot Manager .

Plane Statement Example

These are examples to set the approach check plane using Plane statement.

Check direction is the lower side of the horizontal plane that is −20 mm in Z axis direction in the robot
coordinate system:

> plane 1, xy(100, 200, -20, 90, 0, 180)

Approach check plane is the XY coordinate created by moving 50 mm in X axis and 200 mm in Y axis,
rotating 45 degrees around Y axis：

> plane 2, xy(50, 200, 0, 0, 45, 0)

Set the approach check plane using the tool coordinate system of the robot. (6-axis robot)

> plane 3, here

Plane Function

308 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Plane Function

Returns the specified approach check plane.

Syntax
Plane(PlaneNum)

Parameters
PlaneNum Integer expression representing the plane number from 1 to 15.

Return Values
Returns coordinate data for specified approach check plane.

See Also
InsidePlane, Plane, PlaneClr, PlaneDef

Plane Function Example

P1 = Plane(1)

F

PlaneClr Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 309

PlaneClr Statement

Clears (undifines) the Plane definition.

Syntax
PlaneClr PlaneNum

Parameters
PlaneNum Integer expression representing the plane number from 1 to 15.

Description
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
Box, InsidePlane, Plane, PlaneDef

PlaneClr Statement Example

PlaneClr 1

> S

PlaneDef Function

310 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

PlaneDef Function

Returns the setting of the approach check plane.

Syntax
PlaneDef(PlaneNum)

Parameters
PlaneNum Integer expression representing the plane number from 1 to 15.

Return Values
True if approach detection plane is defined for the specified plane number, otherwise False.

See Also
Box, InsidePlane, Plane, PlaneClr

PlaneDef Function Example

Function DisplayPlaneDef(planeNum As Integer)

 If PlaneDef(planeNum) = False Then
 Print "Plane ", planeNum, "is not defined"
 Else
 Print "Plane 1: ",
 Print Plane(PlaneNum)
 EndIf
Fend

F

PList Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 311

PList Statement

Displays point data in memory for the current robot.

Syntax
(1) PList
(2) PList pointNumber
(3) PList startPoint,
(4) PList startPoint, endpoint

Parameters
pointNumber The number range is 0 to 999.
startPoint The start point number. The number range is 0 to 999.
endPoint The end point index. The number range is 0 to 999.

Return Values
Point data.

Description
Plist displays point data in memory for the current robot.

When there is no point data within the specified range of points, no data will be displayed.
When a start point number is specified larger than the end point number, then an error occurs.

(1) PList
Displays the coordinate data for all points.

(2) PList pointIndex
Displays the coordinate data for the specified point.

(3) PList startPoint,
Displays the coordinate data for all points starting with startPoint.

(4) PList startPoint, endPoint
Displays the coordinate data for all points starting with startPoint and ending with endPoint.

PList Statement Example
This example displays the point data of the current arm position for the current robot.

> plist *
WORLD: X: 360.000 mm Y: 10.000 mm Z: 0.000 mm U: 0.000 deg
JOINT: 1: 0.000 deg 2: 0.000 deg 3: 0.000 mm 4: 0.000 deg
PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 0 pls

This example displays the point data for one point.

> plist 1
P1 = 290.000, 0.000, -20.000, 0.000 /R /0
>

>

PList Statement

312 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

This example displays the point data within the range of 10 and 20. In this example, only three points
are found in this range.

> plist 10, 20
P10 = 290.000, 0.000, -20.000, 0.000 /R /0
P12 = 300.000, 0.000, 0.000, 0.000 /R /0
P20 = 285.000, 10.000, -30.000, 45.000 /R /0
>

This example displays the point data starting with point number 10.

> plist 10,
P10 = 290.000, 0.000, -20.000, 0.000 /R /0
P12 = 300.000, 0.000, 0.000, 0.000 /R /0
P20 = 285.000, 10.000, -30.000, 45.000 /R /0
P30 = 310.000, 20.000, -50.000, 90.000 /R /0
>

PLocal Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 313

PLocal Statement

Sets the local attribute for a point.

Syntax
PLocal(point) = localNumber

Parameters
point An integer value or Pnumber or P(expr) or point label.

Cautions for compatibility
No variables can be specified for point parameter
To use variables, write PLocal(P(varName)).

localNumber An integer expression representing the new local number. Range is 0 to 15.

See Also
PLocal Function

PLocal Statement Example

PLocal(pick) = 1

> S

PLocal Function

314 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

PLocal Function

Returns the local number for a specified point.

Syntax
PLocal(point)

Parameters
point An integer value or Pnumber or P(expr) or point label.

Cautions for compatibility
No variables can be specified for point parameter
To use variables, write PLocal(P(varName)).

Return Values

Local number for specified point.

See Also
PLocal Statement

PLocal Function Example

Integer localNum

localNum = PLocal(pick)

F

Pls Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 315

Pls Function

Returns the current encoder pulse count for each joint at the current position.

Syntax
Pls(jointNumber)

Parameters
jointNumber The specific joint for which to get the current encoder pulse count.

Return Values
Returns a number value representing the current encoder pulse count for the joint specified by
jointNumber.

Description
Pls is used to read the current encoder position (or Pulse Count) of each joint. These values can be
saved and then used later with the Pulse command.

See Also
CX, CY, CZ, CU, CV, CW, Pulse

Pls Function Example
Shown below is a simple example to get the pulse values for each joint and print them.

Function plstest
 Real t1, t2, z, u
 t1 = pls(1)
 t2 = pls(2)
 z = pls(3)
 u = pls(4)
 Print "T1 joint current Pulse Value: ", t1
 Print "T2 joint current Pulse Value: ", t2
 Print "Z joint current Pulse Value: ", z
 Print "U joint current Pulse Value: ", u
Fend

F

PNumber Function

316 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

PNumber Function

Returns the point number associated with a point label.

Syntax
PNumber(pointLabel)

Parameters
pointLabel A point label used in the current point file or string expression containing a point label.

See Also
PDef Function, PLabel$ Function

PNumber Function Example

Integer pNum
String pointName$

pNum = PNumber(pick)

pNum = PNumber("pick")

pointName$ = "place"
pNum = PNumber(pointName$)

Point Assignment

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 317

Point Assignment

Defines a robot point by assigning it to a point expression.

Syntax
point = pointExpr

Parameters
point A robot point specified as follows:

Pnumber
P(expr)
pointLabel

pointExpr Point expression.

Description
Define a robot point by setting it equal to another point or point expression.

See Also
Local, Pallet, PDef, PDel, Plist

Point Assignment Example
The following examples are done from the command window:

Assign coordinates to P1:

> P1 = 300,200,-50,100

Specify left arm posture:

> P2 = -400,200,-80,100/L

Add 20 to X coordinate of P2 and define resulting point as P3:

> P3 = P2 +X(20)
> plist 3
P3=-380,200,-80,100/L

Subtract 50 from Y coordinate of P2, substitute -30 for Z coordinate, and define the resulting point P4
as right arm posture:

>P4=P2 -Y(50) :Z(-30) /R

Add 90 to U coord of Pallet(3, 5), and define resulting point as P6:

> P5 = Here
> P6 = pallet(3,5) +U(90)

> S

Point Expression

318 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Point Expression

Specifies a robot point for assignment and motion commands.

Syntax
point [{ + | - } point] [local] [hand] [elbow] [wrist] [j4flag] [j6flag] [j1flag] [j2flag] [relativeOffsets]

[absoluteCoords]

Parameters
point The base point specification. This can be one of the following:

Pnumber
P(expr)
Here
Pallet(palletNumber, palletIndex)
pointLabel
XY(X, Y, Z, U, [V], [W])
JA(J1, J2, J3, J4, [J5], [J6])
Pulse(J1, J2, J3, J4, [J5], [J6])

local Optional. Local number from 1 to 15 preceded by a forward slash (/0 to /15) or at
sign (@0 to @15). The forward slash means that the coordinates will be in the
local. The at sign means that the coordinates will be translated into local
coordinates.

hand Optional for SCARA robot (including RS series) and 6-axis robots. Specify /L or /R
for lefty or righty hand orientation.

elbow Optional for 6-axis robots. Specify /A or /B for above or below orientation.
wrist Optional for 6-axis robots. Specify /F or /NF for flip or no flip orientation.
j4flag Optional for 6-axis robots. Specify /J4F0 or /J4F1.
j6flag Optional for 6-axis robots. Specify /J6F0 - /J6F127.
j1flag Optional for RS series. Specify /J1F0 or /J1F1.
j2flag Optional for RS series. Specify /J2F0 - /J2F127.
relativeOffsets Optional. One or more relative coordinate adjustments.

{+ | -} {X | Y | Z | U | V | W} (expr)
The TL offsets are relative offsets in the current tool coordinate system.
{+ | -} {TLX | TLY | TLZ | TLU | TLV | TLW} (expr)

absoluteCoords Optional. One or more absolute coordinates.
: {X | Y | Z | U | V | W} (expr)

Description
Point expressions are used in point assignment statements and motion commands.
You can add or subtract points if direct coordinates are not used. For example:

Go P1 + P2
P1 = P2 + XY(100, 100, 0, 0)

Using relative offsets
You can offset one or more coordinates relative to the base point. For example, the following
statement moves the robot 20 mm in the positive X axis from the current position:

Go Here +X(20)

If you execute the same statement again, the robot will move an additional 20 mm along the X axis,
because this is a relative move.

> S

Point Expression

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 319

You can also use relative tool offsets:

Go Here +TLX(20) -TLY(5.5)

When the 6-axis robot moves to a point calculated by such as pallet or relative offsets, the wrist part
may rotate to an unintended direction. The point calculation above does not depend on robot models
and results in motion without converting the required point flag.
LJM function prevents the unintended wrist rotation.

Go LJM(Here +X(20))

Using absolute coordinates
You can change one or more coordinates of the base point by using absolute coordinates. For
example, the following statement moves the robot to the 20 mm position on the X axis:

Go Here :X(20)

If you execute the same statement again, the robot will not move because it is already in the absolute
position for X from the previous move.

Relative offsets and absolute coordinates make is easy to temporarily modify a point. For example,
this code moves quickly above the pick point by 10 mm using a relative offset for Z or 10 mm, then
moves slowly to the pick point.

Speed fast
Jump pick +Z(10)
Speed slow
Go pick

This code moves straight up from the current position by specifying an absolute value of 0 for the Z
joint:

LimZ 0
Jump Here :Z(0)

Using Locals

You can specify a local number using a forward slash or at sign. Each has a separate function.

Use the forward slash to mark the coordinates in a local. For example, adding a /1 in the following
statement says that P1 will be at location 0,0,0,0 in local 1.

P1 = XY(0, 0, 0, 0) /1

Use the at sign to translate the coordinates into local coordinates. For example, here is how to teach
a point in a local:

P1 = Here @1

P1 is set to the current position translated to its position in local 1.

See Also
Go, LJM, Local, Pallet, Pdel, Plist, Hand, Elbow, Wrist, J4Flag, J6Flag, J1Flag, J2Flag

Point Expression

320 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Point Expression Example
Here are some examples of using point expressions in assignments statements and motion
commands:

P1 = XY(300,200,-50,100)
P2 = P1 /R
P3 = pick /1
P4 = P5 + P6
P(i) = XY(100, 200, CZ(P100), 0)
Go P1 -X(20) :Z(-20) /R
Go Pallet(1, 1) -Y(25.5)
Move pick /R
Jump Here :Z(0)
Go Here :Z(-25.5)
Go JA(25, 0, -20, 180)
pick = XY(100, 100, -50, 0)

P1 = XY(300,200,-50,100, -90, 0)
P2 = P1 /F /B
P2 = P1 +TLV(25)

PosFound Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 321

PosFound Function

Returns status of Find operation.

Syntax
PosFound

Return Values
True if position was found during move, False if not.

See Also
Find

PosFound Function Example

Find Sw(5) = ON
Go P10 Find
If PosFound Then
 Go FindPos
Else
 Print "Error: Cannot find the sensor signal."
EndIf

F

Power Statement

322 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Power Statement

Previously Called - Lp

Switches Power Mode to high or low and displays the current status.

Power Syntax
(1) Power { High | Low }
(2) Power

Parameters
High | Low The setting can be High or Low. The default is Low.

Return Values
Displays the current Power status when parameter is omitted.

Description
Switches Power Mode to High or Low. It also displays the current mode status.

Low - When Power is set to Low, Low Power Mode is On. This means that the robot will run slow

(below 250 mm/sec) and the servo stiffness is set light so as to remove servo power if the robot
bumps into an object. This is the normal mode of operation for teaching points.

High - When Power is set to High, Low Power Mode is Off. This means that the robot can run at full

speed with the full servo stiffness. This is the normal mode of operation for running actual
applications.

The following operations will switch to low power mode. In this case, speed and acceleration settings
will be limited to low values.

• Reset Command
• Motor On
• All tasks aborted
• Teach mode

 Speed
 Accel
 SpeedS
 AccelS

Values Limited

Power
Low

Conditions to Cause Power Low

Notes
Low Power Mode (Power Low) and Its Effect on Max Speed:

In low power mode, motor power is limited, and effective motion speed setting is lower than the default
value. If, when in Low Power mode, a higher speed is specified from the Command window (directly)
or in a program, the speed is set to the default value. If a higher speed motion is required, set Power
High.

High Power Mode (Power High) and Its Effect on Max Speed:
In high power mode, higher speeds than the default value can be set.

> S

Power Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 323

See Also
Accel, AccelS, Speed, SpeedS

Power Statement Example
The following examples are executed from the command window:

> Speed 50 'Specifies high speed in Low Power mode

> Accel 100, 100 'Specifies high accel

> Jump P1 'Moves in low speed and low accel

> Speed 'Display current speed values
Low Power Mode
 50
 50 50

> Accel 'Display current accel values
Low Power Mode
 100 100
 100 100
 100 100

> Power High 'Set high power mode

> Jump P2 'Move robot at high speed

Power Function

324 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Power Function

Returns status of power.

Syntax
Power

Return Values

0 = Power Low, 1 = Power High.

See Also
Power Statement

Power Function Example

If Power = 0 Then
 Print "Low Power Mode"
EndIf

F

PPls Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 325

PPls Function

Return the pulse position of a specified joint value from a specified point.

Syntax
PPls (point, jointNumber)

Parameters
point Point expression.
jointNumber Specifies the joint number (integer from 1 to 6) using an expression or numeric

value.

Return Values
Returns the calculated joint position (long value, in pulses).

See Also
Agl, CX, CY, CZ, CU, CV, CW, Pagl

PPls Function Example

Long pulses1

pulses1 = PPls(P10, 1)

F

Print Statement

326 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Print Statement

Outputs data to the current display window, including the Run window, Operator window,
Command window, and Macro window.

Syntax
Print expression [, expression...] [,]
Print

Parameters
expression Optional. A number or string expression.
, (comma) Optional. If a comma is provided at the end of the statement, then a CRLF will

not be added.

Return Values
Variable data or the specified character string.

Description
Print displays variable data or the character string on the display device.

An end of line CRLF (carriage return and line feed) is automatically appended to each output unless a
comma is used at the end of the statement.

Notes
Make Sure Print is used with Wait or a motion within a loop

Tight loops (loops with no Wait or no motion) are generally not good, especially with Print.
The controller may freeze up in the worst case.
Be sure to use Print with Wait command or a motion command within a loop.
Bad example

Do
 Print "1234"

Loop

Good example
Do

 Print "1234"
 Wait 0.1

Loop

See Also

Print #

Print Statement Example
The following example extracts the U Axis coordinate value from a Point P100 and puts the coordinate
value in the variable uvar. The value is then printed to the current display window.

Function test
 Real uvar
 uvar = CU(P100)
 Print "The U Axis Coordinate of P100 is ", uvar
Fend

> S

Print # Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 327

Print # Statement

Outputs data to the specified communications port or device.

Syntax
Print #portNumber, expression [, expression...]

Parameters
portNumber The communications handle or the device ID. Communication handles can be

specified in OpenCom (RS232) and OpenNet (TCP/IP) statements.
 Device ID integers are as follows.

21 RC+
23 OP
24 TP (TP1 only)

expression A numeric or string expression.
, (comma) Optional. If a comma is provided at the end of the statement, then a CRLF will

not be added.

Description
Print # outputs variable data, numerical values, or character strings to the communication port or the
device specified by portNumber .

See Also
Print

Print # Statement Example
The following are some simple Print # examples:

Function printex
 String temp$
 Print #1, "5" 'send the character "5" to serial port 1 temp$ =

"hello"
 Print #1, temp$
 Print #2, temp$
 Print #1 " Next message for port 1"
 Print #2 " Next message for port 2"
Fend

> S

PTCLR Statement

328 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

PTCLR Statement

Clears and intializes the peak torque for one or more joints.

Syntax
PTCLR [j1], [j2], [j3], [j4], [j5], [j6]

Parameters
j1 - j6 Optional. Integer expression representing the joint number. If no parameters are

supplied, then the peak torque values are cleared for all joints.

Description
PTCLR clears the peak torque values for the specified joints.

You must execute PTCLR before executing PTRQ.

See Also
ATRQ, PTRQ

PTCLR Statement Example

> ptclr
> go p1
> ptrq 1
 0.227
> ptrq
 0.227 0.118
 0.249 0.083
 0.000 0.000
>

> S

PTPBoost Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 329

PTPBoost Statement

Specifies or displays the acceleration, deceleration and speed algorithmic boost
parameter for small distance PTP (point to point) motion.

Syntax
(1) PTPBoost boost, [departBoost], [approBoost]
(2) PTPBoost

Parameters
boost Integer expression from 0 to 100.
departBoost Optional. Jump depart boost value. Integer expression from 0 to 100.
approBoost Optional. Jump approach boost value. Integer expression from 0 to 100.

Return Values
When parameters are omitted, the current PTPBoost settings are displayed.

Description
PTPBoost sets the acceleration, deceleration and speed for small distance PTP motion. It is effective
only when the motion distance is small. The PTPBoostOK function can be used to confirm whether or
not a specific motion distance to the destination is small enough to be affected by PTPBoost or not.

PTPBoost does not need modification under normal circumstances. Use PTPBoost only when you
need to shorten the cycle time even if vibration becomes larger, or conversely when you need to
reduce vibration even if cycle time becomes longer.

When the PTPBoost value is large, cycle time becomes shorter, but the positioning vibration
increases. When PTPBoost is small, the positioning vibration becoms smaller, but cycle time
becomes longer. Specifying inappropriate PTPBoost causes errors or can damage the manipulator.
This may degrade the robot, or sometimes cause the manipulator life to shorten.

The PTPBoost value initializes to its default value when any one of the following is performed:

Controller Power On
Motor On
SFree, SLock
Reset
Stop button or Ctrl + C Key

See Also

PTPBoost Function, PTPBoostOK

PTPBoost Statement Example

PTPBoost 50, 30, 30

> S

PTPBoost Function

330 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

PTPBoost Function

Returns the specified PTPBoost value.

Syntax
PTPBoost(paramNumber)

Parameters
paramNumber Integer expression which can have the following values:
 1: boost value
 2: jump depart boost value
 3: jump approach boost value

Return Values
Integer value from 0 to 100.

See Also
PTPBoost Statement, PTPBoostOK

PTPBoost Function Example

Print PTPBoost(1)

F

PTPBoostOK Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 331

PTPBoostOK Function

Returns whether or not the PTP (Point to Point) motion from a current position to a target
position is a small travel distance.

Syntax
PTPBoostOK(targetPos)

Parameters
targetPos Point expression for the target position.

Return Values
True if is it possible to move to the target position from the current position using PTP motion,
otherwise False.

Description
Use PTPBoostOK to the distance from the current position to the target position is small enough for
PTPBoost to be effective.

See Also
PTPBoost

PTPBoostOK Function Example

If PTPBoostOK(P1) Then
 PTPBoost 50
EndIf
Go P1

F

PTPTime Function

332 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

PTPTime Function

Returns the estimated time for a point to point motion command without executing it.

Syntax
(1) PTPTime(destination, destArm, destTool)
(2) PTPTime(start, startArm, startTool, destination, destArm, destTool)

Parameters
start Point expression for the starting position.
destination Point expression for the destination position.
destArm Integer expression for the destination arm number.
destTool Integer expression for the destination tool number.
startArm Integer expression for the starting point arm number.
startTool Integer expression for the starting point tool number.

Return Values
Real value in seconds.

Description
Use PTPTime to calculate the time it would take for a point to point motion command (Go). Use
syntax 1 to calculate time from the current position to the destination. Use syntax 2 to calculate time
from a start point to a destination point.

The actual motion operation is not performed when this function is executed. The current position,
arm, and tool settings do not change.

If the position is one that cannot be arrived at or if the arm or tool settings are incorrect, “0” is returned.

See Also
ATRQ, Go, PTRQ

PTPTime Function Example

Real secs

secs = PTPTime(P1, 0, 0, P2, 0, 1)
Print "Time to go from P1 to P2 is:", secs

Go P1
secs = PTPTime(P2, 0, 1)
Print "Time to go from P1 to P2 is:", secs

F

PTran Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 333

PTran Statement

Perform a relative move of one joint in pulses.

Syntax
PTran joint, pulses

Parameters
joint Integer expression representing which joint to move.
pulses Integer expression representing the number of pulses to move.

Description
Use PTran to move one joint a specified number of pulses from the current position.

See Also
Go, JTran, Jump, Move

PTran Statement Example

PTran 1, 2000

S

PTRQ Statement

334 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

PTRQ Statement

Displays the peak torque for the specified joint.

Syntax
PTRQ [jointNumber]

Parameters
jointNumber Optional. Integer expression representing the joint number.

Return Values
Displays current peak torque values for all joints.

Description
Use PTRQ to display the peak torque value for one or all joints since the PTCLR statement was
executed.

Peak torque is a real number from 0 to 1.

See Also
ATRQ, PTCLR, PTRQ Function

PTRQ Statement Example

> ptclr
> go p1
> ptrq 1
 0.227
> ptrq
 0.227 0.118
 0.249 0.083
 0.000 0.000
>

> S

PTRQ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 335

PTRQ Function

Returns the peak torque for the specified joint.

Syntax
PTRQ(jointNumber)

Parameters
jointNumber Integer expression representing the joint number.

Return Values
Real value from 0 to 1.

See Also
ATRQ, PTCLR, PTRQ Statement

PTRQ Function Example
This example uses the PTRQ function in a program:

Function DisplayPeakTorque
 Integer i

 Print "Peak torques:"
 For i = 1 To 4
 Print "Joint ", i, " = ", PTRQ(i)
 Next i
Fend

F

Pulse Statement

336 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Pulse Statement

Moves the robot arm using point to point motion to the point specified by the pulse
values for each joint.

Syntax
(1) Pulse J1, J2, J3, J4 , [J5] , [J6]
(2) Pulse

Parameters
J1, J2, J3, J4 The pulse value for each of the first four joints. The pulse value has to be within

the range defined by the Range instruction and should be an integer or long
expression.

J5, J6 Optional. For use with 6-axis robots.

Return Values
When parameters are omitted, the pulse values for the current robot position are displayed.

Description
Pulse uses the joint pulse value from the zero pulse position to represent the robot arm position, rather
than the orthogonal coordinate system. The Pulse instruction moves the robot arm using Point to Point
motion.

The Range instruction sets the upper and lower limits used in the Pulse instruction.

Note
Make Sure Path is Obstacle Free Before Using Pulse

Unlike Jump, Pulse moves all axes simultaneously, including Z joint raising and lowering in traveling
to the target position. Therefore, when using Pulse, take extreme care so that the hand can move
through an obstacle free path.

Potential Errors
Pulse value exceeds limit:

If the pulse value specified in Pulse instruction exceeds the limit set by the Range instruction, an error
will occur.

See Also

Go, Accel, Range, Speed, Pls, Pulse Function

Pulse Statement Example
Following are examples on the Command window:

This example moves the robot arm to the position which is defined by each joint pulse.

> pulse 16000, 10000, -100, 10

This example displays the pulse numbers of 1st to 4th axes of the current robot arm position.

> pulse
PULSE: 1: 27306 pls 2: 11378 pls 3: -3072 pls 4: 1297 pls
>

> S

Pulse Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 337

Pulse Function

Returns a robot point whose coordinates are specified in pulses for each joint.

Syntax
Pulse (J1, J2, J3, J4 , [J5] , [J6])

Parameters
J1, J2, J3, J4 The pulse value for joints 1 to 4. The pulse value must be within the range defined

by the Range instruction and should be an integer or long expression.
J5, J6 Optional. For use with 6-axis robots.

Return Values
A robot point using the specified pulse values.

See Also
Go, JA, Jump, Move, Pulse Statement, XY

Pulse Function Example

Jump Pulse(1000, 2000, 0, 0)

F

QP Statement

338 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

QP Statement

Switches Quick Pause Mode On or Off and displays the current mode status.

Syntax
(1) QP { On | Off }
(2) QP

Parameters
On | Off Quick Pause can be either On or Off.

Return Values
Displays the current QP mode setting when parameter is omitted.

Description
If during motion command execution either the Pause switch is pressed, or a pause signal is input to
the controller, quick pause mode determines whether the robot will stop immediately, or will Pause
after having executed the motion command.

Immediately decelerating and stopping is referred to as a "Quick Pause".

With the On parameter specified, QP turns the Quick Pause mode On.
With the Off parameter specified, QP turns the Quick Pause mode Off.

QP displays the current setting of whether the robot arm is to respond to the Pause input by stopping
immediately or after the current arm operation is completed. QP is simply a status instruction used to
display whether Quick Pause mode is on or off.

Notes
Quick pause mode defaults to on after power is turned on:

The Quick Pause mode set by the QP instruction remains in effect after the Reset instruction.
However, when the PC power or Drive Unit power is turned off and then back on, Quick Pause mode
defaults to On.

QP and the Safe Guard Input:
Even if QP mode is set to Off, if the Safe Guard Input becomes open the robot will pause immediately.

See Also

Pause

QP Statement Example

This Command window example displays the current setting of whether the robot arm is to stop
immediately on the Pause input. (i.e. is QP mode set On or Off)

> qp
QP ON

> qp on 'Sets QP to Quick Pause Mode
>

> S

QPDecelR Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 339

QPDecelR Statement

Sets the deceleration speed of quick pause for the change of tool orientation
during the CP motion.

Syntax
(1) QPDecelR QPDecelR
(2) QPDecelR

Parameters
QPDecelR Real value representing the deceleration speed of quick pause during the CP

motion (deg/sec2).
Result

If omitted the parameter, the current QPDecelR set value will be displayed.

Description
QPDecelR statement is enabled when the ROT parameter is used in the Move, Arc, Arc3, BMove,
TMove, and Jump3CP statements.
While quick pause is executed in these statements, a joint acceleration error may occur. This is
because the deceleration speed of quick pause that is automatically set in a normal quick pause is
over the joint allowable deceleration speed. Specifically, the error is likely to occur when the AccelR
value in the CP motion is too high or jogging the robot near a singularity. In these cases, use the
QPDecelR and set a lower quick pause deceleration speed. But if the setting is too low, the distance
for quick pause will increase. Therefore, set the possible value. Normally, you don’t need to set
QPDecelR.

You cannot use values lower than the deceleration speed of orientation change in the CP motion set
with QPDecelR and AccelR. If you do, a parameter out of range error occurs.
Also, after you set QPDecelR, if a higher value than the set QP deceleration speed is set with the
AccelR, the QPDecelR will automatically set the QP deceleration speed same as the decleration
speed set with the AccelR.

The QPDecelR Statement value initializes to the default max deceleration speed when any one of
the following conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also
QPDecelR function, QPDecelS, AccelR

QPDecelR Statement Example

The following program sets the QPDecelR of the Move statement.

Function QPDecelTest
 AccelR 3000

QPDecelR 4000
 SpeedR 100
 Move P1 ROT
 .
 .
 .
Fend

> S

QPDecelR Function

340 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

QPDecelR Function

Returns the set deceleration speed of quick pause for the change of tool orientation
during the CP motion.

Syntax
QPDecelR

Return Values
Real value that contains the set deceleration speed of quick pause for the tool orientation change in
the CP motion (deg/s2)

See Also
QPDecelR, QPDecelS Function

QPDecelR Function Example

Real savQPDecelR

savQPDecelR = QPDecelR

F >

QPDecelS Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 341

QPDecelS Statement

Sets the deceleration speed of quick pause in the CP motion.

Syntax
(1) QPDecelS QPDecelS [, departDecel, approDecel]
(2) QPDecelS

Parameters
QPDecelS Real value that specifies the deceleration speed of quick pause in the CP

motion. (mm/sec2)
departDecel Real value that specifies the deceleration speed of quick pause in the Jump3

depart motion (mm/sec2)
approDecel Real value that specifies the deceleration speed of quick pause in the Jump3

approach motion (mm/sec2)
Return Values

If omitted the parameter, the current QPDecelS set value is displayed.

Description
While quick pause is executed in the CP motion, a joint acceleration error may occur. This is because
the deceleration speed of quick pause that is automatically set in a normal quick pause is over the
joint allowable deceleration speed. Specifically, the error is likely to occur when the AccelS value in
the CP motion is too high or jogging the robot near a singularity. In these cases, use the QPDecelS
and set a lower quick pause deceleration speed. But if the setting is too low, the distance for quick
pause will increase. Therefore, set the possible value. Normally, you don’t need to set QPDecelS.

You cannot use values lower than the deceleration speed of the CP motion set with AccelS. If you do,
a parameter out of range error occurs.
Also, after you set QPDecelS, if a higher value than the set QP deceleration speed is set with the
AccelS, the QPDecelS will automatically set the QP deceleration speed same as the decleration
speed set with the AccelS.

The QPDecelS Statement value initializes to the default max deceleration speed when any one of
the following conditions occurs:

Controller Startup
Motor On
SFree, SLock, Brake
Reset, Reset Error
Stop button or QuitAll stops tasks

See Also
QPDecelS Function, QPDecelR, AccelS

QPDecelS Statement Example
The following program sets the QPDecelS of the Move statement.

Function QPDecelTest
 AccelS 3000

QPDecelS 4000
 SpeedS 100
 Move P1
 .
 .
 .
Fend

> S

QPDecelS Function

342 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

QPDecelS Function

Returns the set deceleration speed of quick pause during the CP motion.

Syntax
QPDecelS (paramNumber)

Parameters
paramNumber Integer expression specifying the one of the following values.
 1: Quick pause deceleration speed during the CP motion
 2: Quick pause deceleration speed in depart motion during the Jump3 and

Jump3CP
 3: Quick pause deceleration speed in approach motion during the Jump3 and

Jump3CP

Return Values
Real value representing the quick pause deceleration speed (mm/s2)

See Also
QPDecelS, QPDecelR Function

QPDecelS Function Example

Real savQPDecelS

savQPDecelS = QPDecelS(1)

F >

Quit Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 343

Quit Statement

Terminates execution of a specified task or all tasks.

Syntax
Quit { taskIdentifier | All }

Parameters
taskIdentifier Task name or integer expression representing the task number.

A task name is the function name used in an Xqt statement or a function started
from the Run window or Operator window. If an integer expression is used, the
range is from 1 to 16 for normal tasks and from 257 to 261 for trap tasks.

All Specifies that all tasks should be terminated.

Description
Quit stops the tasks that are currently being executed, or that have been temporarily suspended with
Halt.

Quit also stops the task when the specified task is NoPause task or NoEmgAbort task (special task
using NoPause or NoEmgAbort at Xqt).
Quit All stops all tasks including the tasks above.

See Also
Exit, Halt, Resume, Xqt

Quit Statement Example
This example shows two tasks that are terminated after 10 seconds.

Function main
 Xqt winc1 'Start winc1 function
 Xqt winc2 'Start winc2 function
 Wait 10
 Quit winc1 'Terminate task winc1
 Quit winc2 'Terminate task winc2
Fend

Function winc1
 Do
 On 1; Wait 0.2
 Off 1; Wait 0.2
 Loop
Fend

Function winc2
 Do
 On 2; Wait 0.5
 Off 2; Wait 0.5
 Loop
Fend

S

RadToDeg Function

344 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

RadToDeg Function

Converts radians to degrees.

Syntax
RadToDeg(radians)

Parameters
radians Real expression representing the radians to convert to degrees.

Return Values
A double value containing the number of degrees.

See Also
ATan, ATan2, DegToRad Function

RadToDeg Function Example

s = Cos(RadToDeg(x))

>

F

Randomize Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 345

Randomize Statement

Initializes the random-number generator.

Syntax
(1) Randomize seedValue
(2) Randomize

Parameter
seedValue Specify a real value (0 or more) to be basis to retrieve a random number.

See Also
Rnd Function

Randomize Statement Example

Function main
 Real r
 Randomize
 Integer randNum

 randNum = Int(Rnd(10)) + 1
 Print "Random number is:", randNum
Fend

S

Range Statement

346 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Range Statement
Specifies and displays the motion limits for each of the servo joints.

Syntax
(1) Range j1Min, j1Max, j2Min, j2Max, j3Min, j3Max, j4Min, j4Max, [j5Min, j5Max, j6Min, j6Max]
(2) Range

Parameters
j1Min The lower limit for joint 1 specified in pulses.
j1Max The upper limit for joint 1 specified in pulses.
j2Min The lower limit for joint 2 specified in pulses.
j2Max The upper limit for joint 2 specified in pulses.
j3Min The lower limit for joint 3 specified in pulses.
j3Max The upper limit for joint 3 specified in pulses.
j4Min The lower limit for joint 4 specified in pulses.
j4Max The upper limit for joint 4 specified in pulses.
j5Min Optional for 6-Axis robots. The lower limit for joint 5 specified in pulses.
j5Max Optional for 6-Axis robots. The upper limit for joint 5 specified in pulses.
j6Min Optional for 6-Axis robots. The lower limit for joint 6 specified in pulses.
j6Max Optional for 6-Axis robots. The upper limit for joint 6 specified in pulses.

Return Values
Displays the current Range values when Range is entered without parameters

Description
Range specifies the lower and upper limits of each motor joint in pulse counts. These joint limits are
specified in pulse units. This allows the user to define a maximum and minimum joint motion range for
each of the individual joints. XY coordinate limits can also be set using the XYLim instruction.
The initial Range values are different for each robot. The values specified by this instruction remain in
effect even after the power is switched off.
When parameters are omitted, the current Range values are displayed.
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Potential Errors
Attempt to Move Out of Acceptable Range

If the robot arm attempts to move through one of the joint limits error an will occur
Axis Does Not Move

If the lower limit pulse is equal to or greater than the upper limit pulse, the joint does not move.

See Also

JRange, SysConfig, XYLim
Range Statement Example

This simple example from the command window displays the current range settings and then changes
them.

> range
-18205, 182045, -82489, 82489, -36864, 0, -46695, 46695
>
> range 0, 32000, 0, 32224, -10000, 0, -40000, 40000
>

> S

Read Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 347

Read Statement

Reads characters from a communications port.

Syntax
Read #portNumber, stringVar$, count

Parameters
portNumber Communications port to read from.
stringVar$ Name of a string variable that will receive the character string.
count Maximum number of bytes to read.

See Also
ChkCom, ChkNet, OpenCom, OpenNet, Write

Read Statement Example

Integer numOfChars
String data$

numOfChars = ChkCom(1)

If numOfChars > 0 Then
 Read #1, data$, numOfChars
EndIf

S

ReadBin Statement

348 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

ReadBin Statement

Reads binary data from a communications port.

Syntax
ReadBin #portNumber, var
ReadBin #portNumber, array(), count

Parameters
portNumber Communications port to read from.
var Name of a byte, integer, or long variable that will receive the data byte.
array() Name of a byte, integer, or long array variable that will receive the data byte. Specify a

one dimension array variable.
count Specify the number of bytes to read. The specified count has to be less than or equal

to the number of array elements.

See Also
Write, WriteBin

ReadBin Statement Example

Integer data
Integer dataArray(10)

numOfChars = ChkCom(1)

If numOfChars > 0 Then
 ReadBin #1, data
EndIf

NumOfChars = ChkCom(1)
 If numOfChars > 10 Then
 ReadBin #1, dataArray(), 10
EndIf

S

Real Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 349

Real Statement

Declares variables of type Real (4 byte real number).

Syntax
Real varName [(subscripts)] [, varName [(subscripts)]...]

Parameters
varName Variable name which the user wants to declare as type Real.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 to the upper

bound value.
 The total available number of array elements for local and global preserve

variables is 1000.
 The total available number of array elements for global and module variables is

10000.
 To calculate the total elements used in an array, use the following formula.

(If a dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)

Description

Real is used to declare variables as type Real. Local variables should be declared at the top of a
function. Global and module variables must be declared outside functions.
Number of valid digits are six digits for Real type.

See Also
Boolean, Byte, Double, Global, Integer, Long, String

Real Statement Example
The following example shows a simple program which declares some variables using Real.

Function realtest
 Real var1
 Real A(10) 'Single dimension array of real
 Real B(10, 10) 'Two dimension array of real
 Real C(5, 5, 5) 'Three dimension array of real
 Real arrayVar(10)
 Integer i
 Print "Please enter a Real Number:"
 Input var1
 Print "The Real variable var1 = ", var1
 For i = 1 To 5
 Print "Please enter a Real Number:"
 Input arrayVar(i)
 Print "Value Entered was ", arrayVar(i)
 Next i
Fend

S

RealPls Function

350 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

RealPls Function

Returns the pulse value of the specified joint.

Syntax
RealPls(jointNumber)

Parameters
jointNumber The specific joint for which to get the current pulse count.

Return Values
Returns an integer value representing the current encoder pulse count for the joint specified by
jointNumber.

Description
RealPls is used to read the current encoder position (or Pulse Count) of each joint. These values can
be saved and then used later with the Pulse command.

See Also
CX, CY, CZ, CU, CV, CW, Pulse

RealPls Function Example

Function DisplayPulses

 Long joint1Pulses

 joint1Pulses = RealPls(1)
 Print "Joint 1 Current Pulse Value: ", joint1Pulses
Fend

F

RealPos Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 351

RealPos Function

Returns the current position of the specified robot.

Syntax
RealPos

Return Values
A robot point representing the current position of the specified robot.

Description
RealPos is used to read the current position of the robot.

See Also
CurPos, CX, CY, CZ, CU, CV, CW, RealPls

RealPos Function Example

Function ShowRealPos

 Print RealPos
Fend

P1 = RealPos

F

RealTorque Function

352 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

RealTorque Function

Returns the current torque instruction value of the specified joint.

Syntax
RealTorque(jointNumber)

Parameters
jointNumber Specifies the joint number to acquire the torque instruction value using an

expression or numeric value.
Return values

Returns the real value (-1 to 1) representing the proportion in the maximum torque on current power
mode.
The positive value means the positive direction of the joint angle and the negative value means the
negative direction.

See also
TC, TCSpeed, TCLim

RealTorque Function Example

Print "Current Z axis torqueinstruction value (SCARA):", RealTorque(3)

F

Redim Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 353

Redim Statement

Redimension an array at run-time.

Syntax
Redim [Preserve] arrayName (subscripts)

Parameters
Preserve Optional. Specifies to preserve the previous contents of the array. If omitted, the

array will be cleared.
arrayName Name of the array variable; follows standard variable naming conventions. The

array must have already been declared.
 dim1, dim2, dim3 can be an integer expression from 0-2147483646.
subscripts Optional. New dimensions of an array variable may be declared. You must

supply the same number of dimensions as when the variable was declared. The
subscripts syntax is as follows

 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 to the upper

bound value.
 The total available number of array elements for local and global preserve

variables is 100 for strings and 1000 for all other types.
 The total available number of array elements for global and module variables is

1000 for strings and 10000 for all other types.
 To calculate the total elements used in an array, use the following formula. (If a

dimension is not used, substitute 0 for the ubound value.)
 total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)

Description

Use Redim to change an array's dimensions at run time. Use Preserve to retain previous values.
The array variable declared by Byref cannot use Redim.

See Also

UBound

Redim Statement Example

Integer i, numParts, a(0)

Print "Enter number of parts "
Input numParts

Redim a(numParts)

For i=0 to UBound(a)
 a(i) = i
Next

' Redimension the array with 20 more elements
Redim Preserve a(numParts + 20)

' The first element values are retained
For i = 0 to UBound(a)
 Print a(i)
Next

S

Reset Statement

354 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Reset Statement

Resets the controller into an initialized state.

Syntax
Reset

Description
Reset resets the following items:

Emergency Stop Status
Error status
Output Bits (All Outputs, except I/O assigned to remote output, set to Off; User can set EPSON RC+
to turn this feature off)
Current robot Speed, SpeedR, SpeedS (Initialized to default values)
Current robot Accel, AccelR, AccelS (Initialized to default values)
Current robot LimZ parameter (Initialized to 0)
Current robot Fine (Initialized to default values)
Current robot Power Low (Low Power Mode set to On)
Current robot PTPBoost (Initialized to default values)

For servo related errors, Emergency Stop status, and any other conditions requiring a Reset, no
command other than Reset will be accepted. In this case first execute Reset, then execute other
processing as necessary.

For example, after an emergency stop, first verify safe operating conditions, execute Reset, and then
execute Motor On.

Critical error state will not be canceled by Reset.
When critical error occurs, turn Off the controller and solve the cause of the error.

Notes
Reset Option Switch

If the "Reset turns off outputs" controller preference is on, then when the Reset instruction is issued,
all outputs will be turned off. This is important to remember when wiring the system such that turning
the outputs off should not cause tooling to drop or similar situations. See Setup | Controller |
Preferences in the User's Guide for more details.

See Also

Accel, AccelS, Fine, LimZ, Motor, Off, On, PTPBoost, SFree, SLock, Speed, SpeedS

Reset Statement Example
This shows the Reset instruction issued from the command window.

>reset
>

> S

ResetElapsedTime Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 355

ResetElapsedTime Statement

Resets the takt time measurement timer used in ElapsedTime Function.

Syntax
ResetElapsedTime

Description

Resets and starts the takt time measurement timer.

See Also

ElapsedTime Function

ResetElapsedTime Statement Example

ResetElapsedTime 'Resets the takt time measurement timer
For i = 1 To 10 'Executes 10 times
 GoSub Cycle
Next
Print ElapsedTime / 10 'Measures a takt time and displays it

> S

Resume Statement

356 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Resume Statement

Continues a task which was suspended by the Halt instruction.

Syntax
Resume { taskIdentifier | All }

Parameters
taskIdentifier Task name or integer expression representing the task number.

A task name is the function name used in an Xqt statement or a function started
from the Run window or Operator window. If an integer expression is used, the
range is from 1 to 16 for normal tasks and from 257 to 261 for trap tasks.

All Specifies that all tasks should be resumed.

Description
Resume continues the execution of the tasks suspended by the Halt instruction.

See Also
Halt, Quit, Xqt

Resume Statement Example
This shows the use of Resume instruction after the Halt instruction.

Function main
 Xqt 2, flicker 'Execute flicker as task 2

 Do
 Wait 3 'Allow flicker to execute for 3 seconds
 Halt flicker 'Halt the flicker task
 Wait 3
 Resume flicker 'Resume the flicker task
 Loop
Fend

Function flicker
 Do
 On 1
 Wait 0.2
 Off 1
 Wait 0.2
 Loop
Fend

S

Return Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 357

Return Statement

The Return statement is used with the GoSub statement. GoSub transfers program control to
a subroutine. Once the subroutine is complete, Return causes program execution to continue
at the line following the GoSub instruction which initiated the subroutine.

Syntax
Return

Description
The Return statement is used with the GoSub statement. The primary purpose of the Return
statement is to return program control back to the instruction following the GoSub instruction which
initiated the subroutine in the first place.

The GoSub instruction causes program control to branch to the user specified statement line number
or label. The program then executes the statement on that line and continues execution through
subsequent line numbers until a Return instruction is encountered. The Return instruction then
causes program control to transfer back to the line which immediately follows the line which initiated
the GoSub in the first place. (i.e. the GoSub instruction causes the execution of a subroutine and then
execution returns to the statement following the GoSub instruction.)

Potential Errors
Return Found Without GoSub

A Return instruction is used to "return" from a subroutine back to the original program which issued
the GoSub instruction. If a Return instruction is encountered without a GoSub having first been
issued then an error will occur. A stand alone Return instruction has no meaning because the system
doesn't know where to return to.

See Also

OnErr, GoSub, GoTo

Return Statement Example

The following example shows a simple function which uses a GoSub instruction to branch to a label
called checkio and check the first 16 user inputs. Then the subroutine returns back to the main
program.

Function main
 Integer var1, var2
 GoSub checkio
 On 1
 On 2
 Exit Function

checkio: 'Subroutine starts here
 var1 = In(0)
 var2 = In(1)
 If var1 <> 0 Or var2 <> 0 Then
 Print "Message to Operator here"
 EndIf
finished:
 Return 'Subroutine ends here and returns to line 40
Fend

S

Right$ Function

358 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Right$ Function

Returns a substring of the rightmost characters of a string.

Syntax
Right$(string, count)

Parameters
string String variable or character string of up to 255 characters from which the

rightmost characters are copied.
count The number of characters to copy from string starting with the rightmost

character.

Return Values
Returns a string of the rightmost count characters from the character string specified by the user.

Description
Right$ returns the rightmost count characters of a string specified by the user. Right$ can return up to
as many characters as are in the character string.

See Also
Asc, Chr$, InStr, Left$, Len, Mid$, Space$, Str$, Val

Right$ Function Example
The example shown below shows a program which takes a part data string as its input and splits out
the part number, part name, and part count.

Function SplitPartData(DataIn$ As String, ByRef PartNum$ As String,
ByRef PartName$ As String, ByRef PartCount As Integer)

 PartNum$ = Left$(DataIn$, 10)

 DataIn$ = Right$(datain$, Len(DataIn$) - pos)
 pos = Instr(DataIn$, ",")

 PartName$ = Mid$(DataIn$, 11, 10)

 PartCount = Val(Right$(dataIn$, 5))

Fend

Some other example results from the Right$ instruction from the Command
window.
> Print Right$("ABCDEFG", 2)
 FG

> Print Right$("ABC", 3)
 ABC

F

Rnd Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 359

Rnd Function

Return a random number.

Syntax
Rnd(maxValue)

Parameters
maxValue Real expression that represents the maximum return value.

Return Values
Random real number from 0 to range.

Description
Use Rnd to generate random number values.

See Also
Int, Randomize

Rnd Function Example
Here's a Rnd example that generates a random number between 1 and 10.

Function main
 Real r
 Integer randNum

 Randomize
 randNum = Int(Rnd(9)) + 1
 Print "Random number is:", randNum
Fend

F

RobotInfo Function

360 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

RobotInfo Function

Returns status information for the robot.

Syntax
RobotInfo(index)

Parameters
index Integer expression that represents the index of the information to retrieve.

Return Values
The specified information is returned as an integer.

Description
The information for each bit of the returned value is shown in the table below:

Index Bit Value Description

0

0 &H1 Undefined
1 &H2 Resetable error has occurred
2 &H4 Non-resetable error has occured
3 &H8 Motors are on
4 &H10 Current power is high
5 &H20 Undefined
6 &H40 Undefined
7 &H80 Undefined
8 &H100 Robot is halted
9 &H200 Robot not halted (executing motion or in quick pause)
10 &H400 Robot stopped by pause or safeguard
11 Undefined
12 Undefined
13 Undefined
14 &H4000 TILL condition was satisfied by preceding motion command
15 &H8000 SENSE condition was satisfied by preceding motion command

16-31 Undefined
1 0-31 Undefined

2 0 &H1 Robot is at home position
1-31 Undefined

3

0 &H1 Joint 1 servo is engaged
1 &H2 Joint 2 servo is engaged
2 &H4 Joint 3 servo is engaged
3 &H8 Joint 4 servo is engaged
4 &H10 Joint 5 servo is engaged
5 &H20 Joint 6 servo is engaged

6-31 Undefined

4

N/A
0 - 16

-1
Number of tasks executing robot commands
0 = command executing from command window or macro
-1 = no task is using the manipulator

5

0 &H1 Joint 1 brake is on
1 &H2 Joint 2 brake is on
2 &H4 Joint 3 brake is on
3 &H8 Joint 4 brake is on
4 &H10 Joint 5 brake is on
5 &H20 Joint 6 brake is on

6-31 Undefined

See Also
CtrlInfo, RobotInfo$, TaskInfo

F

RobotInfo Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 361

RobotInfo Function Example

If (RobotInfo(3) And &H1) = &H1 Then
 Print "Joint 1 is locked"
Else
 Print "Joint 1 is free"
EndIf

RobotInfo$ Function

362 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

RobotInfo$ Function

Returns text information for the robot.

Syntax
RobotInfo$(index)

Parameters
index Integer expression that represents the index of the information to retrieve.

Return Values
A string containing the specified information.

Description

Index Description
0 Robot name
1 Model name
2 Undefined
3 Undefined
4 Serial number of robot

See Also

CtrlInfo, RobotInfo, TaskInfo

RobotInfo$ Function Example

Print "Robot Name: ", RobotInfo$(0)

F

RobotModel$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 363

RobotModel$ Function

Returns the robot model name.

Syntax
RobotModel$

Return Values
A string containing the model name. This is the name that is shown on the rear panel of the robot.

See Also
RobotType

RobotModel$ Function Example

Print "The robot model is ", RobotModel$

F

RobotName$ Function

364 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

RobotName$ Function

Returns the robot name.

Syntax
RobotName$

Return Values
A string containing the robot name.

See Also
RobotInfo, RobotModel$

RobotName$ Function Example

Print "The robot name is ", RobotName$

F

RobotSerial$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 365

RobotSerial$ Function

Returns the robot serial number.

Syntax
RobotSerial$

Return Values
A string containing the robot serial number.

See Also
RobotInfo, RobotName$, RobotModel$

RobotSerial$ Function Example

Print "The robot serial number is ", RobotSerial$

F

RobotType Function

366 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

RobotType Function

Returns the robot type.

Syntax
RobotType

Return Values
1: JOINT

2: Cartesian

3: SCARA

5: 6-AXIS

6: RS series

See Also
RobotModel$

RobotType Function Example

If RobotType = 3 Then
 Print "Robot type is SCARA"
EndIf

F

RSet$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 367

RSet$ Function

Returns the specified string with leading spaces added up to the specified length..

Syntax
RSet$ (string, length)

Parameters
string String expression.
length Integer expression for the total length of the string returned.

Return Values
Specified string with leading spaces appended.

See Also
LSet$, Space$

RSet$ Function Example

temp$ = "123"
temp$ = RSet$(temp$, 10) ' temp$ = " 123"

F

RShift Function

368 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

RShift Function

Shifts numeric data to the right by a user specified number of bits.

Syntax
RShift(number, shiftBits)

Parameters
number Numeric expression to be shifted.
shiftBits The number of bits (integer from 0 to 31) to shift number to the right.

Return Values
Returns a numeric result which is equal to the value of number after shifting right shiftbits number of
bits.

Description
RShift shifts the specified numeric data (number) to the right (toward a lower order digit) by the
specified number of bits (shiftBits). The high order bits shifted are replaced by 0.

The simplest explanation for RShift is that it simply returns the result of number / 2shiftBits. (Number
is divided by 2 shiftBit times.)

Notes
Numeric Data Type:

The numeric data (number) may be any valid numeric data type. RShift works with data types: Byte,
Integer, and Real.

See Also

And, LShift, Not, Or, Xor

RShift Function Example
The example shown below shows a program which shows all the possible RShift values for an Integer
data type starting with the integer set to “0”.

Function rshiftst
 Integer num, snum, i
 num = 32767
 For i = 1 to 16
 Print "i =", i
 snum = RShift(num, 1)
 Print "RShift(32767, ", i, ") = ", snum
 Next i
Fend

Some other example results from the RShift instruction from the command window.

> Print RShift(10,1)
5
> Print RShift(8,3)
1
> Print RShift(16,2)
4

F

RTrim$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 369

RTrim$ Function

Returns a string equal to specified string without trailing spaces.

Syntax
RTrim$(string)

Parameters
string String expression.

Return Values
Specified string with trailing spaces removed.

See Also
LTrim$, Trim$

RTrim$ Function Example

str$ = " data "
str$ = RTrim$(str$) ' str$ = "..data"

EndIf

F

SafetyOn Function

370 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SafetyOn Function

Return the Safety Door open status.

Syntax
SafetyOn

Return Values
True if the Safety Door is Open, otherwise False.

Description
SafetyOn function is used only for NoPause task or NoEmgAbort task (special task using NoPause
or NoEmgAbort at Xqt).

See Also
ErrorOn, EstopOn, PauseOn, Wait, Xqt

SafetyOn Function Example
The following example shows a program that monitors the Safety Door open and switches the I/O
On/Off when Safety Door open occurs.

Notes
Forced Flag

This program example uses Forced flag for On/Off command.
Be sure that the I/O outputs change during error, or at Emergency Stop or Safety Door Open when
designing the system.

Function main

 Xqt SafetyOnOffMonitor, NoPause
 :
 :
Fend

Function SafetyOnOffMonitor
 Do
 Wait SafetyOn = On
 Print "Saftey Open"
 Off 10, Forced
 On 12, Forced

 Wait SafetyOn = Off
 Print "Saftey Close"
 On 10, Forced
 Off 12, Forced
 Loop
Fend

F

SavePoints Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 371

SavePoints Statement

Saves point data in main memory.

Syntax
SavePoints filename

Parameters
fileName String expression containing the file into which points will be stored. The specified

fileName will have the extension “.pts” appended to the end so no extension is to be
specified by the user.

Description
SavePoints saves points to the specified file. The specified fileName will have the extension “.pts”
appended to the end so no extension is to be specified by the user.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Potential Errors
Bad File name

If a file name is entered which has spaces in the name, or other bad file name characteristics an error
will be issued.

See Also

ClearPoints, LoadPoints

SavePoints Statement Example

ClearPoints
For i = 1 To 10
 P(i) = XY(i, 100, 0, 0)
Next i
SavePoints "TEST.PTS"

> S

Select...Send Statement

372 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Select...Send Statement

Executes one of several groups of statements, depending on the value of an expression.

Syntax
Select selectExpr
 Case caseExpr
 statements
 [Case caseExpr
 statements]
 [Default
 statements]

Send

Parameters
selectExpr Any numeric or string expression.
caseExpr Any numeric or string expression that evaluates to the same type as selectExpr.
statements One or more valid SPEL+ statements or multi-statements.

Description
If any one caseExpr is equivalent to selectExpr, then the statements after the Case statement are
executed. After execution, program control transfers to the statement following the Send statement.

If no caseExpr is equivalent to selectExpr, the Default statements are executed and program control
transfers to the statement following the Send statement.

If no caseExpr is equivalent to selectExpr and Default is omitted, nothing is executed and program
control transfers to the statement immediately following the Send statement.

selectExpr and caseExpr may include constants, variables, and logical operators that use And, Or and
Xor.

See Also
If...Then...Else

Select…Send Statement Example
Shown below is a simple example for Select...Send:

Function Main
 Integer I
 For i = 0 To 10
 Select I
 Case 0
 Off 1;On 2;Jump P1
 Case 3
 On 1;Off 2
 Jump P2;Move P3;On 3
 Case 7
 On 4
 Default
 On 7
 Send
 Next
Fend

S

Sense Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 373

Sense Statement

Specifies and displays input condition that, if satisfied, completes the Jump in progress
by stopping the robot above the target position.

Syntax
Sense [inputCondition]

Parameters
inputCondition The following functions and operators may be used in the inputCondition:

Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemW, Ctr
Operators : And, Or, Xor
Example Sense Sw(5) = On
 Sense Sw(5) = On And Sw(6) = Off

Description

Sense is used to stop approach motion during a Jump, Jump3, and Jump3CP instructions. The
Sense condition must include at least one of the functions above.

When variables are included in the Sense condition, their values are computed when setting the
Sense condition. No use of variable is recommended. Otherwise, the condition may be an
unintended condition. Multiple Sense statements are permitted. The most recent Sense condition
remains current until superseded with another Sense statement.

Jump, Jump3, Jump3CP with Sense Modifier
Checks if the current Sense condition is satisfied. If satisfied, the Jump instruction completes with the
robot stopped above the target position. (i.e. When the Sense Condition is True, the robot arm
remains just above the target position without executing approach motion. When the Sense condition
is False, the robot arm completes the full Jump instruction motion through to the target position.

When parameters are omitted, the current Sense definition is displayed.

Notes
Sense Setting at Main Power On

At power on, the initial Sense condition is:
Sense Sw(0) = On 'Robot does not execute downward motion when Input bit 0 is on

Use of JS and Stat to Verify Sense
Use JS or Stat to verify if the Sense condition has been satisfied after execting a motion command
using Sense modificators.

See Also

In, InW, Out, OutW, JS, Jump, Jump3, Jump3CP, MemIn, MemSw, Stat, Sw

> S

Sense Statement

374 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Sense Statement Example
This is a simple example on the usage of the Sense instruction.

Function test
 .
 .
TrySense:
 Sense Sw(1) = Off 'Specifies the arm stops
 'above the target when
 'the input bit 1 is Off.
 Jump P1 C2 Sense
 If JS = True Then
 GoSub ERRPRC 'If the arm remains stationary
 GoTo TrySense 'above the point specified,
 'then execute ERRPRC and go to TrySense.
 EndIf
 On 1; Wait 0.2; Off 1
 .
 .
Fend

<Other Syntax Examples>

> Sense Sw(1)=1 And MemSw(1)=1

> Sense Sw(0) Or (Sw(1) And MemSw(1))

SetCom Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 375

SetCom Statement

Sets or displays parameters for RS-232C port.

Syntax
SetCom #portNumber, [baud], [dataBits], [stopBits] , [parity] , [terminator] , [HWFlow],
[SWFlow] , [timeOut]

Parameters
portNumber Specifies which RS232 port to set parameters for. Valid values are from 1 to 8.
baud Optional. Specifies the baud rate. Valid values are:

110 2400 19200
300 4800 38400
600 9600 56000
1200 14400 115200
(Default: 9600)

dataBits Optional. Specifies the number of data bits per character. Valid values are 7
and 8.

stopBits Optional. Specifies the number of stop bits per character. Valid values are 1 and
2.

parity Optional. Specifies the parity. Valid values are O (Odd), E (Even), and N (None).
terminator Optional. Specifies the line termination characters. Valid values are CR, LF,

CRLF.
HWFlow Optional. Specifies hardware control. Valid values are RTS and NONE.
SWFlow Optional. Specifies software control. Valid values are XON and NONE.
timeOut Optional. Specifies the maximum time for transmit or receive in seconds. If this

value is 0, then there is no time out.
Description

When all the parameter is omitted, displays a communication port setting.
If the several ports are used in the communication at one time with more than 19200 baud rate, error
2929 or 2922 may occur. In this case, select the lower baud rate or avoid using several ports at one
time.
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
OpenCom, CloseCom, SetNet

SetCom Statement Example

SetCom #1, 9600, 8, 1, N, CRLF, NONE, NONE, 0

SetCom #2, 4800

S

SetIn Statement

376 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SetIn Statement

For Virtual IO, sets specified input port (8 bits) to the specified value.

Syntax
SetIn portNumber, value

Parameters
portNumber Integer expression representing the input port number.
value Integer expression between 0 and 255 to set the specified port to.

Description
SetIn provides the ability to set up to 8 bits of virtual inputs at once.

See Also
SetSW, SetInW

SetIn Function Example

> setin 0, 1 ' Sets the first bit of port 0 to On.

S >

SetInReal Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 377

SetInReal Statement

For Virtual IO, sets specified input port (2 words (32 bits)) as 32 bits floating-point
data (IEEE754 compliant).

Syntax
SetInReal portNumber, value

Parameters
portNumber Integer expression representing the input port word.
value Specifies Real type value.

Description
When Virtual I/O is available, set the value of 2 input words from the input word port specified by
portNumber as IEEE754 32 bits Real type value.
Input word label can be used for the portNumber parameter.
When Virtual I/O is not available, SetInReal will be an error.

See Also
SetSw, SetIn, SetInW

SetInReal Example

> SetInReal 0, 1.23 'Set a Real value (1.23) to word 0,1

S >

SetInW Statement

378 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SetInW Statement

For Virtual IO, sets specified input word (16 bits) to the specified value.

Syntax
SetInW portNumber, value

Parameters
portNumber Integer expression representing the input port number.
value Number between 0 and 65535 to set the specified word to.

Description
SetInW provides the ability to set up to 16 bits of virtual inputs at once.

See Also
SetSw, SetIn

SetInW Function Example

> setinw 0, 1 ' Sets the first bit of word 0 to On.

S >

SetNet Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 379

SetNet Statement

Sets parameters for a TCP/IP port.

Syntax
SetNet #portNumber, hostAddress, TCP_IP_PortNum, terminator, SWFlow, timeout

Parameters
portNumber Specifies which port to set parameters for. Valid values are 201 to 208.
hostAddress Specifies the host IP address.
TCP_IP_PortNum Specifies the TCP/IP port number for this node.
terminator Specifies the line termination characters. Valid values are CR, LF, CRLF.
SWFlow Specifies software control. Valid value is NONE.
timeOut Specifies the maximum time for transmit or receive in seconds. If this value is “0”,

then there is no time out.

Description
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
OpenNet, CloseNet, SetCom

SetNet Example

SetNet #201, "192.168.0.1", 2001, CRLF, NONE, 0

S

SetSw Statement

380 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SetSw Statement

For Virtual IO, sets specified input bit to the specified value.

Syntax
SetSw bitNumber, value

Parameters
bitNumber Integer expression representing the input bit number.
value Integer expression with a value of 0 (Off) or 1 (On).

Description
SetSw provides the ability to turn on or off one input bit.

See Also
SetIn, SetInW

SetSw Function Example

> setsw 2, on ' Sets the 2nd input bit to On.

S >

SFree Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 381

SFree Statement

Removes servo power from the specified servo axis.

Syntax
SFree jointNumber [, jointNumber,...]

Parameters
jointNumber An integer expression representing a servo joint number.

Description
SFree removes servo power from the specified servo joints. This instruction is used for the direct
teaching or the part installation by partially de-energizing a specific joint. To re-engage a joint execute
the SLock instruction or Motor On.

Notes
SFree Sets Some System Items back to Their Initial State:

SFree, for safety purposes, initializes parameters concerning the robot arm speed (Speed and
SpeedS), acceleration (Accel and AccelS) and the LimZ parameter.

Notes
SFree and its Use with the Z Joint and U Joint for SCARA robots (including RS series)

The Z joint has electromagnetic brakes so setting SFree for the Z joint does not immediately allow the
Z joint to be moved. To move the Z joint by hand requires the brake to be released continuously by
pressing the brake release switch on the top of the robot arm.
Some model has electronic brake on the U joint. When the robot has the U joint electronic brake,
setting SFree for the U joint does not immediately allow the U joint to be moved. To move the U joint
by hand requires the brake to be released continuously by pressing the brake release switch on the
top of the robot arm.

SFree is Not Valid with 6-Axis robots
All joints of the 6-axis robots have an electromagnetic brake. The brake can be released using the
Brake command with the motor off. In the motor off state, SFree is not valid. If you execute SFree
with the motor on, an electromagnetic brake will be on. You cannot move any joint by hand using
SFree.

Executing motion commands while joints are in SFree state
Attempting to execute a motion command while in the SFree condition will cause an error in the
controller's default state. However, to allow motion while 1 or more of the axes are in the SFree state,
turn on the "Allow Motion with one or more axes free" controller preference. (This preference can be
set from the Setup | Controller | Preferences EPSON RC+ 5.0.)

See Also

Brake, LimZ, Motor, SFree Function, SLock

SFree Statement Example

This is a simple example on the usage of the SFree instruction. The Motion with SFree controller
preference must be enabled for this example to work.

Function GoPick
 Speed pickSpeed
 SFree 1, 2 'Release the excitation of J1 and J2,
 'and control the Z and U joints for part installation.
 Go pick
 SLock 1, 2 'Restore the excitation of J1 and J2.
Fend

> S

SFree Function

382 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SFree Function

Returns SFree status for a specified joint.

Syntax
SFree(jointNumber)

Parameters
jointNumber Integer expression representing the joint number to check.

Return Values
True if the joint is free, False if not.

See Also
SFree Statement

SetFree Function Example

If SFree(1) Then
 Print "Joint 1 is free"
EndIf

F

Sgn Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 383

Sgn Function

Determines the sign of the operand.

Syntax
Sgn(Operand)

Parameters
Operand A numeric expression.

Return Values
1: If the operand is a positive value.
0: If the operand is a 0
-1: If the operand is a negative value.

Description
The Sgn function determines the sign of the numeric value of the operand.

See Also
Abs, And, Atan, Atan2, Cos, Int, Mod, Or, Not, Sin, Sqr, Str$, Tan, Val, Xor

Sgn Function Example
This is a simple command window example on the usage of the Sgn function.

>print sgn(123)
 1
>print sgn(-123)
 -1
>

F

Signal Statement

384 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Signal Statement

Send a signal to tasks executing WaitSig.

Syntax
Signal signalNumber

Parameters
signalNumber Signal number to transmit. Range is 0 to 15.

Description
Signal can be used to synchronize multi-task execution.

Previous signals issued before WaitSig is executed are ignored.

See Also
WaitSig

Signal Statement Example

Function Main
 Xqt 2, SubTask
 Call InitSys
 Signal 1

Fend

Function SubTask
 WaitSig 1

Fend

S

Sin Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 385

Sin Function

Returns the sine of a numeric expression.

Syntax
Sin(radians)

Parameters
radians Real expression in Radians.

Return Values
Numeric value representing the sine of the numeric expression radians.

Description
Sin returns the sine of the numeric expression. The numeric expression (radians) must be in radian
units. The value returned by the Sin function will range from -1 to 1.

To convert from radians to degrees, use the RadToDeg function.

See Also
Abs, Atan, Atan2, Cos, Int, Mod, Not, Sgn, Sqr, Str$, Tan, Val

Sin Function Example
The following example shows a simple program which uses Sin.

Function sintest
 Real x
 Print "Please enter a value in radians:"
 Input x
 Print "Sin of ", x, " is ", Sin(x)
Fend

F

SingularityAngle Statement

386 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SingularityAngle Statement

Sets the singularity neighborhood angle necessary for the singularity avoiding function.

Syntax
SingularityAngle {Angle}

Parameter
Angle Specify the Joint #5 angle (real number equals to or greater than 0.1. Unit: deg)

by a formula or a value for determining the wrist singularity neighborhood of the
vertical 6-axis robot.

Result
Current SingularityAngle value will be displayed if the parameter is omitted.

Description
This command is enabled only when the singularity avoiding function is being used.
Default is 10 deg. This command can be used to adjust the start position of the singularity avoidance.
If the value smaller than the default is specified, avoidance motion starts at the point closer to the
singularity. Usually, it is not necessary to change the parameter. This may be useful to reduce errors
which occur when passing the singularity.

If SingularityAngle parameter is changed, the current setting is effective until the next controller startup.

See Also

AvoidSingularit, SingualrityAngle Function, SingularitySpeed

SingularityAngle Statement Example
SingularityAngle 7.0 'Sets the singularity neighborhood angle at 7 degrees

S

SingularityAngle Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 387

SingularityAngle Function

Returns the SingularityAngle setting value.

Syntax
SingularityAngle

Return value
Returns the singularity neighborhood angle (Unit: deg).

See Also
AvoidSingularity, SingularityAngle, SingularitySpeed, SingularitySpeed Function

SingularityAngle Function Example

Real currSingularityAngle
currSingularityAngle = SingularityAngle

F

SingularityDist Statement

388 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SingularityDist Statement

Sets the singularity neighborhood distance necessary for the singularity avoiding
function.

Syntax
SingularityDist {distance}

Parameter
distance Specify the distance between the point P and Joint #1 rotation axis (real number

equals to or larger than 0. Unit: mm) by a formula or a valule for determining the
shoulder singularity neighborhood or f the vertical 6-axis robot.

Result

Current SingularityDist value will be displayed if the parameter is omitted.

Description
This command is enabled only when the singularity avoiding function is being used.
Default is 30 mm. This command can be used to adjust the start position of the singularity avoidance.
If the value smaller than the default is specified, avoidance motion starts at the point closer to the
singularity. Usually, it is not necessary to change the parameter. This may be useful to reduce errors
which occur when passing the singularity.

If SingularityDIst parameter is changed, the current setting is effective until the next controller startup.

See Also

AvoidSingularity, SingularityAngle, SingualrityAngle Function, SingularityDist Function,
SingularitySpeed, SingularitySpeed Function

SingularityDist Statement Example

SingularityDist 10.0 'Sets the singularity neighborhood distance at 10 mm

S >

SingularityDist Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 389

SingularityDist Function

Returns the SingularityDist setting value.

Syntax
SingularityDist

Return value
Returns the singularity neighborhood distance (Unit: mm).

See Also
SingularityDist, AvoidSingularity, SingularityAngle, SingularityAngle Function, SingularitySpeed,
SingularitySpeed Function

SingularityDist Function Example

Real currSingularityDist
currSingularityDist = SingularityDist

F

SingularitySpeed Statement

390 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SingularitySpeed Statement

Sets the singularity neighborhood angular velocity necessary for the singularity avoiding function.

Syntax
SingularitySpeed {Angular velocity}

Parameter
Angular velocity Specify the percentage of the Joint #4 angular velocity with respect to the

maximum angular velocity (real number equals to or greater than 0.1. Unit: %) by
a formula or a value for determining the wrist singularity neighborhood of the
vertical 6-axis robot.

Result

Current SingularitySpeed value will be displayed if the parameter is omitted.

Description
This command is enabled only when the singularity avoiding function is being used.
Default is 25 %. This command can be used to adjust the start position of the singularity avoidance. If
the value smaller than the default is specified, avoidance motion starts at the point closer to the
singularity. Usually, it is not necessary to change the parameter. This may be useful to reduce errors
which occur when passing the singularity.

If SingularitySpeed parameter is changed, the current setting is effective until the next controller
startup.

See Also
AvoidSingularity Function, SingualrityAngle, SingularitySpeed

SingularitySpeed Example

SingularitySpeed 30.0 'Sets the singularity neighborhood angular velocity at 30 %

S

SingularitySpeed Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 391

SingularitySpeed Function

Returns the SingularitySpeed setting value.

Syntax
SingularitySpeed

Return Value
Returns the singularity neighborhood angular velocity (Unit: %).

See Also
SingularitySpeed, SingularityAngle, AvoidSingularity

SingularitySpeed Function Example

Real currSingularitySpeed
currSingularitySpeed = SingularitySpeed

F

SLock Statement

392 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SLock Statement

Restores servo power from servo free condition for the specified servo axis.

Syntax
SLock jointNumber [, jointNumber,...]

Parameters
jointNumber The servo joint number.

Description
SLock restores servo power to the specified servo joint, which was de-energized by the SFree
instruction for the direct teaching or part installation.

If the joint number is omitted, all joints are engaged.

Engaging the 3rd joint (Z) causes the brake to release.

To engage all axes, Motor On may be used instead of SLock.

Executing SLock while in Motor Off state will cause an error.

Notes
SLock Sets Some System Items back to Their Initial State:

SLock, for safety purposes, initializes parameters concerning the robot arm feed speed (Speed and
SpeedS), acceleration (Accel and AccelS) and the LimZ parameter.

See Also

Brake, LimZ, Reset, SFree

SLock Statement Example
This is a simple example on the usage of the SLock instruction. The Motion with SFree controller
preference must be enabled for this example to work.

Function test
 .
 .
 .
 SFree 1, 2 'Release the excitation of J1 and J2,
 'and control the Z and U joints for part installation.
 Go P1
 SLock 1, 2 'Restore the excitation of J1 and J2.
 .
 .
 .
Fend

> S

SoftCP Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 393

SoftCP Statement

Specifies the SoftCP motion mode.

Syntax
SoftCP { On | Off }

Parameters
On | Off On is used to enable SoftCP motion mode.

Off is used to disable SoftCP motion mode.
Description

SoftCP motion mode controls the vibration caused by CP motion with high acceleration/deceleration.
Normal CP motion focuses on path-tracking and uniform-motion which increases the vibration when
acceleration/deceleration is high. To reduce the vibration, acceleration/deceleration needs to be
reduced with the SpeedS and AccelS commands.
However, some applications don’t necessarily require the high performance of path-tracking and
uniform-motion but need CP motion with less vibration when acceleration/deceleration is high.
SoftCP motion mode dampens the path-tracking and uniform-motion performance more than in the
normal CP motion mode and reduces the vibration in CP motion with high acceleration/deceleration.

SoftCP motion mode applies to the following CP motion commands:

Move, BMove, TMove, Arc, Arc3, CVMove, Jump3CP

If the vibration doesn’t matter in the normal CP motion or the performances of path-tracking and
uniform-motion are required, don’t apply SoftCP motion mode.

SoftCP will be set to Off in the following cases:

Controller startup
Reset
All task stop
Switching the Auto / Programming operation mode
Motor On
SFree, SLock

See Also

SoftCP Function

SoftCP Statement Example

SoftCP On
Move P1
Move P2
SoftCP Off

S

SoftCP Function

394 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SoftCP Function

Returns the status of SoftCP moton mode.

Syntax
SoftCP

Return Values
0 = SoftCP motion mode off, 1 = SoftCP motion mode on.

See Also
SoftCP Statement

SoftCP Function Example

If SoftCP = Off Then
 Print "SoftCP is off"
EndIf

F

Space$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 395

Space$ Function

Returns a string of space characters.

Syntax
Space$(count)

Parameters
count The number of spaces to put in the return string.

Return Values
Returns a string of count space characters.

Description
Space$ returns a string of count space characters as specified by the user. Space$ can return up to
255 characters (the maximum number of characters allowed in a string variable).

The Space$ instruction is normally used to insert spaces before, after, or between other strings of
characters.

See Also
Asc, Chr$, InStr, Left$, Len, LSet$, Mid$, Right$, RSet$, Str$, Val

Space$ Function Example

> Print "XYZ" + Space$(1) + "ABC"
XYZ ABC

> Print Space$(3) + "ABC"
 ABC
>

F

Speed Statement

396 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Speed Statement

Specifies or displays the arm speed for the point to point motion instructions Go,
Jump and Pulse.

Syntax
(1) Speed percent [, departSpeed, approSpeed]
(2) Speed

Parameters
percent Integer expression between 1 and 100 representing the arm speed as a

percentage of the maximum speed.
departSpeed Integer expression between 1 and 100 representing the depart motion speed for

the Jump instruction. Optional. Available only with Jump command.
approSpeed Integer expression between 1 and 100 representing the approach motion speed

for the Jump instruction. Optional. Available only with Jump command.

Return Values
Displays current Speed value when used without parameters.

Description
Speed specifies the arm speed for all point to point motion instructions. This includes motion caused
by the Go, Jump and Pulse robot motion instructions. The speed is specified as a percentage of
maximum speed with the range of acceptable values between 1-100. (1 represents 1% of the
maximum speed and 100 represents 100% of maximum speed). Speed 100 represents the maximum
speed possible.

Depart and approach speed values apply only to the Jump instruction. If omitted, each defaults to the
percent value.

The speed value initializes to its default value when any one of the following is performed:

Controller Power On
Motor On
SFree, SLock
Reset
Stop button or Ctrl+C Key

In Low Power Mode, the effective speed setting is lower than the default value. If a higher speed is
specified directly (from the command window) or in a program, the speed is set to the default value. In
High Power Mode, the motion speed setting is the value specified with Speed.

If higher speed motion is required, set high power mode using Power High and close the safety door.
If the safety door is open, the Speed settings will be changed to their default value.

If Speed is executed when the robot is in low power mode, the following message is displayed. The
following example shows that the robot will move at the default speed (5) because it is in Low Power
Mode even though the speed setting value by Speed is 80.

> speed 80
> speed
Low Power Mode
 80
 80 80
>

> S

Speed Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 397

See Also
Accel, Go, Jump, Power, Pass, Pulse, SpeedS

Speed Statement Example
Speed can be used from the command window or in a program. Shown below are simple examples of
both methods.

Function speedtst
 Integer slow, fast, i
 slow = 10
 fast = 100
 For i = 1 To 10
 Speed slow
 Go P0
 Go P1
 Speed fast
 Go P0
 Go P1
 Next i
Fend

From the command window the user can also set Speed values.

> Speed 100,100,50 'Z joint downward speed set to 50
> Speed 50
> Speed
 Low Power State: Speed is limited to 5
 50
 50 50
>

Speed Function

398 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Speed Function

Returns one of the three speed settings.

Syntax
Speed[(paramNumber)]

Parameters
paramNumber Integer expression which evaluates to one of the values shown below.

When omitted, 1 will be taken as the specified number.
 1: PTP motion speed
 2: Jump depart speed
 3: Jump approach speed

Return Values
Integer value from 1 to 100.

See Also
Speed Statement

Speed Function Example

 Integer savSpeed

 savSpeed = Speed(1)
 Speed 50
 Go pick
 Speed savSpeed
Fend

F

SpeedR Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 399

SpeedR Statement

Sets or displays the tool rotation speed for CP motion when ROT is used.

Syntax
(1) SpeedR rotSpeed
(2) SpeedR

Parameters
rotSpeed Real expression in degrees / second.

Valid entries range of the parameters: 0.1 to 1000

Return Values
When parameters are omitted, the current SpeedR setting is displayed.

Description
SpeedR is effective when the ROT modifier is used in the Move, Arc, Arc3, BMove, TMove, and
Jump3CP motion commands.

The SpeedR value initializes to the default value (low speed) when any one of the following conditions
occurs:

Controller Power On
Motor On
SFree, SLock
Reset
Stop button or Ctrl + C Key

See Also

AccelR, Arc, Arc3, BMove, Jump3CP, Power, SpeedR Function, TMove

SpeedR Statement Example

SpeedR 200

>

S

SpeedR Function

400 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SpeedR Function

Returns tool rotation speed value.

Syntax
SpeedR

Return Values
Real value in degrees / second

See Also
AccelR, SpeedR

SpeedR Function Example

Real currSpeedR

currSpeedR = SpeedR

> F

SpeedS Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 401

SpeedS Statement

Specifies or displays the arm speed for use with the continuous path motion instructions
such as Move, Arc, Arc3, Jump3, and Jump3CP.

Syntax
(1) SpeedS speed [, departSpeed, approSpeed]
(2) SpeedS

Parameters
speed Real expression representing the CP motion speed in units of mm/sec.
departSpeed Optional. Real expression representing the Jump3 depart speed in units of

mm/sec.
approSpeed Optional. Real expression representing the Jump3 approach speed in units of

mm/sec.
Valid entries range of the parameters: 0.1 to 2000

Return Values
Displays current SpeedS value when used without parameters.

Description
SpeedS specifies the tool center point speed for use with all the continuous path motion instructions.
This includes motion caused by the Move and Arc instructions.

SpeedS is specified in mm/Sec which represents a Tool Center Point velocity for the robot arm. The
default value varies from robot to robot. See the robot manual for the default SpeedS values for your
robot model. This is the initial SpeedS value set up automatically by the controller each time main
power is turned on.

The SpeedS value initializes to its default value when any one of the following is performed:

Controller Power On
Motor On
SFree, SLock
Reset
Stop button or Ctrl + C Key

In Low Power Mode, the effective SpeedS setting is lower than the default value. If a higher speed is
specified directly (from the command window) or in a program, the speed is set to the default value. In
High Power Mode, the motion SpeedS setting is the value of SpeedS.

If higher speed motion is required, set high power mode using Power High and close the safety door.
If the safety door is open, the SpeedS settings will be changed to their default value.

If SpeedS is executed when the robot is in low power mode, the following message is displayed.
The following example shows that the robot will move at the default speed (50) because it is in Low
Power Mode even though the speed setting value by SpeedS is 800.

 > SpeedS 800
 Low Power State: SpeedS is limited to 50
 >
 > SpeedS
 Low Power State: SpeedS is limited to 50
 800
 >

> S

SpeedS Statement

402 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

See Also
AccelS, Arc, Jump3, Move, Speed

SpeedS Statement Example
SpeedS can be used from the command window or in a program. Shown below are simple examples
of both methods.

Function speedtst
 Integer slow, fast, i
 slow = 50
 fast = 500
 For i = 1 To 10
 SpeedS slow
 Go P0
 Move P1
 SpeedS fast
 Go P0
 Move P1
 Next i
Fend

From the command window the user can also set SpeedS values.

> speeds 1000
> speeds 500
> speed 30 'set point to point speed
> go p0 'point to point move
> speeds 100 'set straight line speed in mm/Sec
> move P1 'move in straight line

SpeedS Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 403

SpeedS Function

Returns the current SpeedS setting.

Syntax
SpeedS [(paramNumber)]

Parameters
paramNumber Optional. Integer expression specifying which SpeedS value to return.
 1: CP speed
 2: Jump3 depart speed
 3: Jump3 approach speed

Return Values
Real number, in mm/sec

See Also
SpeedS Statement

SpeedS Function Example

Real savSpeeds

savSpeeds = SpeedS

Print "Jump3 depart speed = ", SpeedS(2)

F

SPELCom_Event Statement

404 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SPELCom_Event Statement

Generates a user event for a VB Guide SPELCom control used in a host program.

Syntax
SPELCom_Event eventNumber [, msgArg1, msgArg2, msgArg3,...]

Parameters
eventNumber An integer expression whose value is from 1000 - 32767.
msgArg1, msgArg2, msgArg3... Optional. Each message argument can be either a number,

string literal, or a variable name.

Description
This instruction makes it easy to send real time information to another application using the SPELCom
ActiveX control provided in the VB Guide option. For example, you can update parts count, lot
number, etc. by sending an event to your host program.

Note
This command will only work if the VB Guide option is installed.

See Also

VB Guide Manual

SPELCom_Event Statement Example
In this example, a SPEL+ task sends cycle data to the host program.

Function RunParts
 Integer cycNum

 cycNum = 0
 Do
 ...
 ...
 cycNum = cycNum + 1
 Spelcom_Event 3000, cycNum, lot$, cycTime
 Loop
Fend

> S

Sqr Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 405

Sqr Function

Computes the non-negative square root value of the operand.

Syntax
Sqr(Operand)

Parameters
Operand A real expression.

Return Values
Square root value.

Description
The Sqr function returns the non-negative square root value of the operand.

Potential Errors
Negative operand

If the operand is or has a negative numeric value, an error will occur.

See Also

Abs, And, Atan, Atan2, Cos, Int, Mod, Not, Or, Sgn, Sin, Str$, Tan, Val, Xor

Sqr Function Example
This is a simple Command window example on the usage of the Sqr function.

>print sqr(2)
 1.414214
>

The following example shows a simple program which uses Sqr.

Function sqrtest
 Real x
 Print "Please enter a numeric value:"
 Input x
 Print "The Square Root of ", x, " is ", Sqr(x)
Fend

F

Stat Function

406 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Stat Function

Returns the execution status information of the controller.

Syntax
Stat(address)

Parameters
address Defines which status bits to check. (0 to 2)

Return Values
Returns a 4 byte value that presents the status of the controller. Refer to table below.

Description
The Stat instruction returns information as shown in the table below:

Address Bit Controller Status Indicated When Bit is On
0 0

to
15

&H1
to
&H8000

Task 1 is being executed (Xqt) or in Halt State
 to
Task 16 is being executed (Xqt) or in Halt State

 16 &H10000 Task(s) is being executed
 17 &H20000 Pause condition
 18 &H40000 Error Condition
 19 &H80000 Teach mode
 20 &H100000 Emergency Stop Condition
 21 &H200000 Low Power Mode (Power Low)
 22 &H400000 Safe Guard Input is Closed
 23 &H800000 Enable Switch is Open
 24 &H1000000 Undefined
 25 &H2000000 Undefined
 26-31 Undefined
1 0 &H1 Log of Stop above target position upon satisfaction of condition

in Jump...Sense statement. (This log is erased when another
Jump statement is executed).

 1 &H2 Log of stop at intermediate travel position upon satisfaction of
condition in Go/Jump/Move...Till statement. (This log is erased
when another Go/Jump/Move...Till statement is executed

 2 &H4 Undefined
 3 &H8 Log of stop at intermediate travel position upon satisfaction of

condition in Trap statement
 4 &H10 Motor On mode
 5 &H20 Current position is home position
 6 &H40 Low power state
 7 &H80 Undefined
 8 &H100 4th Joint Motor is On
 9 &H200 3rd Joint Motor is On
 10 &H400 2nd Joint Motor is On
 11 &H800 1st Joint Motor is On
 12 &H1000 6th Joint Motor is On
 13 &H2000 5th Joint Motor is On
 14-31 Undefined

F

Stat Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 407

See Also
EStopOn Function, TillOn Function, PauseOn Function, SafetyOn Function

Stat Function Example

Function StatDemo

 rbt1_sts = RShift((Stat(0) And &H070000), 16)
 Select TRUE
 Case (rbt1_sts And &H01) = 1
 Print "Tasks are running"
 Case (rbt1_sts And &H02) = 2
 Print "Pause Output is ON"
 Case (rbt1_sts And &H04) = 4
 Print "Error Output is ON"
 Send
Fend

Str$ Function

408 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Str$ Function

Converts a numeric value to a string and returns it.

Syntax
Str$(number)

Parameters
number Integer or real expression.

Return Values
Returns a string representation of the numeric value.

Description
Str$ converts a number to a string. Any positive or negative number is valid.

See Also
Abs, Asc, Chr$, InStr, Int, Left$, Len, Mid$, Mod, Right$, Sgn, Space$, Val

Str$ Function Example
The example shown below shows a program which coverts several different numbers to strings and
then prints them to the screen.

Function strtest
 Integer intvar
 Real realvar
 '
 intvar = -32767
 Print "intvar = ", Str$(intvar)
 '
 realvar = 567.9987
 Print "realvar = ", Str$(realvar)
 '
Fend

Some other example results from the Str$ instruction from the command window.

> Print Str$(99999999999999)
 1.000000E+014

> Print Str$(25.999)
 25.999

F

String Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 409

String Statement

Declares variables of type String. (Character-string variables)

Syntax
String varName$ [(subscripts)] [, varName$ [(subscripts)]...]

Parameters
varName$ Variable name which the user wants to declare as type String.
subscripts Optional. Dimensions of an array variable; up to 3 dimensions may be declared.

The subscripts syntax is as follows
 (ubound1, [ubound2], [ubound3])
 ubound1, ubound2, ubound3 each specify the maximum upper bound for the

associated dimension.
 The elements in each dimension of an array are numbered from 0 to the upper

bound value.
 The total available number of array elements for local and global preserve

variables is 100.
 The total available number of array elements for global and module variables is

1000.
 To calculate the total elements used in an array, use the following formula. (If a

dimension is not used, substitute 0 for the ubound value.)
total elements = (ubound1 + 1) * (ubound2 + 1) * (ubound3 + 1)

Description

The String statement is used to declare variables of type String. String variables can contain up to
255 characters. Local variables should be declared at the top of a function. Global and module
variables must be declared outside of functions.
String Operators
The following operators can be used to manipulate string variables:
 + Merges character strings together. Can be used in the assignment statements for string

variables or in the Print instruction.
 Example: name$ = fname$ + " " + lname$

 = Compares character strings. True is returned only when the two strings are exactly equal,

including case.
 Example: If temp1$ = "A" Then GoSub test

 < > Compares character strings. True is returned when one or more characters in the two

strings are different.
 Example: If temp1$ <> "A" Then GoSub test

Notes
Variable Names Must Include "$" Character:

Variables of type String must have the character "$" as the last character in the variable name.

See Also

Boolean, Byte, Double, Global, Integer, Long, Real

S

String Statement

410 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

String Statement Example

String password$
String A$(10) 'Single dimension array of string
String B$(10, 10) 'Two dimension array of string
String C$(5, 5, 5) 'Three dimension array of string

Print "Enter password:"
Input password$
If UCase$(password$) = "EPSON" Then
 Call RunMaintenance
Else
 Print "Password invalid!"
EndIf

Sw Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 411

Sw Function

Returns or displays the selected input port status. (i.e. Discrete User I/O)

Syntax
Sw(bitNumber)

Parameters
bitNumber Integer expression representing I/O input bits.

Return Values
Returns “1” when the specified input is On and “0” when the specified input is Off.

Description
Sw provides a status check for hardware inputs. Sw is most commonly used to check the status of
one of the inputs which could be connected to a feeder, conveyor, gripper solenoid, or a host of other
devices which works via discrete I/O. Obviously the input checked with the Sw instruction has 2 states
(1 or 0). These indicate whether the device is On or Off.

See Also
In, InBCD, MemOn, MemOff, MemSw, Off, On, OpBCD, Oport, Out, Wait

Sw Function Example
The example shown below simply checks the discrete input #5 and branches accordingly. On is used
instead of 1 for more clarity.

Function main
 Integer i, feed5Ready
 feed5Ready = Sw(5)
 'Check if feeder is ready
 If feed5Ready = On Then
 Call mkpart1
 Else
 Print "Feeder #5 is not ready. Please reset and"
 Print "then restart program"
 EndIf
Fend

Other simple examples are as follows from the command window:

> print sw(5)
1
>

F

SyncLock Statement

412 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SyncLock Statement

Synchronizes tasks using a mutual exclusion lock.

Syntax

SyncLock syncID [, timeOut]

Parameters
syncID Integer expression representing signal number to receive. Range is from 0 to 15.
timeOut Optional. Real expression representing the maximum time to wait for lock.

Description
Use SyncLock to lock use of a common resource so that only one task at a time can use it. When the
task is finished with the resource, it must call SyncUnlock to release the lock so other tasks can use it.

A task can only unlock a syncID that it previously locked.

A task must execute SyncUnlock to release the lock. If the task is quit, then no other task can use the
lock until all tasks are aborted.

When SynLock is second consecutive used to a same signal number, an error occurs.

If the timeOut parameter is used, then the Twcmd_tw function must be used to check if the lock was
successful.

See Also
Signal, SyncLock, Tw, Wait, WaitPos

S

SyncLock Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 413

SyncLock Statement Example
The following example uses SyncLock and SyncUnlock to allow only one task at a time to write a
message to a communcation port.

Function Main

 Xqt Func1
 Xqt Func2
Fend

Function Func1
 Long count
 Do
 Wait .5
 count = count + 1
 LogMsg "Msg from Func1, " + Str$(count)
 Loop
Fend

Function Func2
 Long count
 Do
 Wait .5
 count = count + 1
 LogMsg "Msg from Func2, " + Str$(count)
 Loop
Fend

Function LogMsg(msg$ As String)
 SyncLock 1
 OpenCom #1
 Print #1, msg$
 CloseCom #1
 SyncUnlock 1
Fend

The following example uses SyncLock with optional time out. Tw is used to check if the lock was
successful. By using a timeout, you can execute other code periodically while waiting to lock a
resource.

Function MySyncLock(syncID As Integer)
 Do
 SyncLock syncID, .5
 If Tw = 0 Then
 Exit Function
 EndIf
 If Sw(1) = On Then
 Off 1
 EndIf
 Loop
Fend

SyncUnlock Statement

414 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SyncUnlock Statement

Unlocks a sync ID that was previously locked with SyncLock.

Syntax
SyncUnlock syncID

Parameters
syncID Integer expression representing signal number to receive. Range is from 0 to 15.

Description
Use SyncUnlock to unlock a sync ID previously locked with SyncLock.

A task can only unlock a syncID that it previously locked.

See Also
Signal, SyncLock, Wait, WaitPos

SyncUnlock Statement Example

Function Main

 Xqt task
 Xqt task
 Xqt task
 Xqt task
Fend

Function task
 Do
 SyncLock 1
 Print "resource 1 is locked by task", MyTask
 Wait .5
 SyncUnlock 1
 Loop
Fend

S

SysConfig Command

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 415

SysConfig Command

Displays system configuration parameter.

Syntax
SysConfig

Return Values
Returns system configuration parameter.

Description
Display current configurated value for system control data. When the robot and controller is received
from the factory or after changing the configuration, it is a good idea to save this data. This can be
done with Backup Controller from te Tools | Controller dialog.

The following data will be displayed. (The following data is for reference only since data will vary from
controller to controller.)

' Version:
' Firmware 1, 0, 0, 0

' Options:
' External Control Point
' VB Guide

' HOUR: 414.634

' Controller:
' Serial #: 0001

' ROBOT 1:
' Name: Mnp01
' Model: PS3-AS10
' Serial #: 0001
' Motor On Time: 32.738
' Motor 1: Enabled, Power = 400
' Motor 2: Enabled, Power = 400
' Motor 3: Enabled, Power = 200
' Motor 4: Enabled, Power = 50
' Motor 5: Enabled, Power = 50
' Motor 6: Enabled, Power = 50

S

SysConfig Command

416 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

 ARCH 0, 30, 30
 ARCH 1, 40, 40
 ARCH 2, 50, 50
 ARCH 3, 60, 60
 ARCH 4, 70, 70
 ARCH 5, 80, 80
 ARCH 6, 90, 90
 ARMSET 0, 0, 0, 0, 0, 0
 HOFS 0, 0, 0, 0, 0, 0
 HORDR 63, 0, 0, 0, 0, 0
 RANGE -7427414, 7427414, -8738134, 2621440, -3145728, 8301227, -5534152, 5534152,
-3640889, 3640889, -6553600, 6553600
 BASE 0, 0, 0, 0, 0, 0
 WEIGHT 2, 0
 INERTIA 0.1, 0
 XYLIM 0, 0, 0, 0, 0, 0

' Extended I/O Boards:
' 1: Installed
' 2: Installed
' 3: None installed
' 4: None installed

' Fieldbus I/O Board:
' Installed
' Type: PROFIBUS

' RS232C Boards:
' 1: Installed
' 2: None installed

SysConfig Statement Example

> SysConfig

SysErr Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 417

SysErr Function

Returns the latest error status or warning status.

Syntax
SysErr [(infoNo)]

Parameters
infoNo Optional. Integer number representing the error code or warning code to get.

0 : Error code (When the parameter is omitted, 0 is automatically selected.)
1 : Warning code

Return Values
An integer representing the error code or warning code of the controller.

Description
SysErr is used only for NoEmgAbort task (special task using NoEmgAbort at Xqt).
Error codes or warning codes of controller are the error codes or warning codes dispayed on the on
the seven-segment LED.
When there are no errors or warnings, the return value will be 0.

See Also
ErrMsg$, ErrOn, Xqt

SysErr Function Example
The following example shows a program that monitors the controller error and switches the I/O On/Off
according to the error number when error occurs.

Notes
Forced Flag

This program example uses Forced flag for On/Off command.
Be sure that the I/O outputs change during error, or at Emergency Stop or Safety Door Open when
designing the system.

After Error Occurence
As this program, finish the task promply after completing the error handling.

Function main

Xqt ErrorMonitor, NoEmgAbort
:
:

Fend

Function ErrorMonitor
 Wait ErrorOn
 If 4000 < SysErr Then
 Print "Motion Error = ", SysErr
 Off 10, Forced
 On 12, Forced
 Else
 Print "Other Error = ", SysErr
 Off 11, Forced
 On 13, Forced
 EndIf

Fend

Tab$ Function

418 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Tab$ Function

Returns a string containing the specified number of tabs characters.

Syntax
Tab$(number)

Parameters
number Integer expression representing the number of tabs.

Return Values
String containing tab characters.

Description
Tab$ returns a string containing the specified number of tabs.

See Also
Left$, Mid$, Right$, Space$

Tab$ Function Example

Print "X", Tab$(1), "Y"
Print
For i = 1 To 10
 Print x(i), Tab$(1), y(i)
Next i

F

Tan Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 419

Tan Function

Returns the tangent of a numeric expression.

Syntax
Tan(radians)

Parameters
radians Real expression given in radians.

Return Values
Real number containing the tangent of the parameter radians.

Description
Tan returns the Tangent of the numeric expression. The numeric expression (radians) may be any
numeric value as long as it is expressed in radian units.

To convert from radians to degrees, use the RadToDeg function.

See Also
Abs, Atan, Atan2, Cos, Int, Mod, Not, Sgn, Sin, Sqr, Str$, Val

Tan Function Example

Function tantest
 Real num
 Print "Enter number in radians to calculate tangent for:"
 Input num
 Print "The tangent of ", num, "is ", Tan(num)
Fend

The examples shown below show some typical results using the Tan instruction from the Command
window.

> print tan(0)
0.00
> print tan(45)
1.6197751905439
>

F

TargetOK Function

420 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TargetOK Function

Returns a status indicating whether or not the PTP (Point to Point) motion from the current
position to a target position is possible.

Syntax
TargetOK(targetPos)

Parameters
targetPos Point expression for the target position.

Return Values
True if is it possible to move to the target position from the current position, otherwise False.

Description
Use TargetOK to verify that a target position and orientation can be reached before actually moving to
it. The motion trajectory to the target point is not considered.

See Also
CurPos, FindPos, InPos, WaitPos

TargetOK Function Example

If TargetOK(P1) Then
 Go P1
EndIf

If TargetOK(P10 /L /F) Then
 Go P10 /L /F
EndIf

F

TaskDone Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 421

TaskDone Function

Returns the completion status of a task.

Syntax
TaskDone (taskIdentifier)

Parameters
taskIdentifier Task name or integer expression representing the task number.

A task name is the function name used in an Xqt statement or a function started
from the Run window or Operator window. If an integer expression is used, the
range is from 1 to 16 for normal tasks and from 257 to 261 for trap tasks.

Return Values

True if the task has been completed, False if not.

Description
Use TaskDone to determine if a task has completed.

See Also
TaskState, TaskWait

TaskDone Function Example

Xqt 2, conveyor
Do
 .
 .
Loop Until TaskDone(conveyor)

F

TaskInfo Function

422 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TaskInfo Function

Returns status information for a task.

Syntax
TaskInfo(taskIdentifier, index)

Parameters
taskIdentifier Task name or integer expression representing the task number.

A task name is the function name used in an Xqt statement or a function started from
the Run window or Operator window. If an integer expression is used, the range is
from 1 to 16 for normal tasks and from 257 to 261 for trap tasks.

index Integer expression that represents the index of the information to retrieve.

Return Values
An integer containing the specified information.

Description

Index Description
0 Task number
1 Undefined

2

Task type
0 - Normal task

Nothing specified in Xqt or start the task by Normal
1 - NoPause task

Specified NoPause in Xqt and start the task
2 - NoEmgAbort task

Specified NoEmgAbort in Xqt and start the task

3

−1 - Specified task is not executing.
1 - Specified task is executing.
2 - Specified task is waiting for an event.
3 - Specified task is paused or halted
4 - Specified task is in quick pause state
5 - Specified task is in error state

4 Timeout has occured during wait for event (same as TW)
5 Event wait time (milliseconds).
6 Current robot number selected by the task
7 Current robot number being used by the task

See Also

CtrlInfo, RobotInfo, TaskInfo$

TaskInfo Function Example

If (TaskInfo(1, 3) = 3 Then
 Print "Task 1 is runnning"
Else
 Print "Task 1 is not running"
EndIf

F

TaskInfo$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 423

TaskInfo$ Function

Returns text information for a task.

Syntax
TaskInfo$(taskIdentifier, index)

Parameters
taskIdentifier Task name or integer expression representing the task number.

A task name is the function name used in an Xqt statement or a function started from
the Run window or Operator window. If an integer expression is used, the range is
from 1 to 16 for normal tasks and from 257 to 261 for trap tasks.

index Integer expression that represents the index of the information to retrieve.

Return Values
A string containing the specified information.

Description
The following table shows the information that can be retrieved using TaskInfo$:

Index Description
0 Task name
1 Start date / time
2 Name of function currently executing
3 Line number in the program file that contains the function

See Also

CtrlInfo, RobotInfo, TaskInfo

TaskInfo$ Function Example

Print "Task 1 started: "TaskInfo$(1, 1)

F

TaskState Function

424 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TaskState Function

Returns the current state of a task.

Syntax
TaskState(taskIdentifier)

Parameters
taskIdentifier Task name or integer expression representing the task number.

A task name is the function name used in an Xqt statement or a function started
from the Run window or Operator window. If an integer expression is used, the
range is from 1 to 16 for normal tasks and from 257 to 261 for trap tasks.

Return Values

0: Task not running
1: Task is running
2: Task is waiting for an event
3: Task has been halted
4: Task has been paused in QuickPause
5: Task in error condition

Description
Use TaskState to get status for a given task. You can specify task number or task name.

See Also
TaskDone, TaskWait

TaskState Function Example

If TaskState(conveyor) = 0 Then
 Xqt 2, conveyor
EndIf

F

TaskWait Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 425

TaskWait Statement

Waits to for a task to terminate.

Syntax
TaskWait (taskIdentifier)

Parameters
taskIdentifier Task name or integer expression representing the task number.

A task name is the function name used in an Xqt statement or a function started
from the Run window or Operator window. If an integer expression is used, the
range is from 1 to 16 for normal tasks and from 257 to 261 for trap tasks.

See Also

TaskDone, TaskState

TaskWait Statement Example

Xqt 2, conveyor
TaskWait conveyor

S

TC Statement

426 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TC Statement

Returns the torque control mode setting and current mode.

Syntax
(1) TC { On | Off }
(2) TC

Parameters

On | Off On : Torque control mode ON
 Off : Torque control mode OFF

Return Values

When the parameters are omitted, returns the current torque control mode.

Description

TC On/Off set the torque control mode available/unavailable.
The torque control mode sets the motor output limit to generate the constant force. This is used in
pressing a hand to an object at constant force or making the close contact and coordinate moving of
hand with an object .
Before setting the torque control available, configure the limits of torque control and speed control in
TCLim and TCSpeed.
Under the torque control, the robot moves as positioning to the target while an operation command is
executed. When the robot contact an object and motor output is at the torque control limit, the robot
stops its operation and keeps the constant torque.

In any of the following cases, the torque mode turns unavailable.

Controller power ON
Motor On
SFree, SLock
Reset
STOP button or Ctrl + C key

See Also
TCLim, TCSpeed

TC Statement Example

Speed 5
Go ApproachPoint

'Set the Z axis torque limit to 20 %
TCLim -1, -1, 20, -1
'Set the speed in torque control to 5 %
TcSpeed 5

TC On
Go ContactPoint
Wait 3
Go ApproachPoint
TC Off

S

TCLim Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 427

TCLim Statement

Specifies the torque limit of each joint for the torque control mode.

Syntax

TCLim [j1Torque limit, j2Torque limit, j3Torque limit, j4Torque limit, [j5Torque limit], [j6Torque limit]]

Parameters

j1Torque limit Specifies the proportion to the maximum momentary torque (1 to 100 / unit: %)
using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j2Torque limit Specifies the proportion to the maximum momentary torque (1 to 100 / unit: %)
using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j3Torque limit Specifies the proportion to the maximum momentary torque (1 to 100 / unit: %)
using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j4Torque limit Specifies the proportion to the maximum momentary torque (1 to 100 / unit: %)
using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j5Torque limit Option. Specifies the proportion to the maximum momentary torque (1 to 100
/ unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

j6Torque limit Option. Specifies the proportion to the maximum momentary torque (1 to 100
/ unit: %) using an expression or numeric value.
-1: Disable the torque limit and turns the mode to normal position control.

Return vlaues

When the parameters are omitted, returns the current torque limit.

Description

Setting to the torque limit becomes available at TC On.

When the limit value is too low, the robot doesn’t work and operation command stops before the robot
reaches the target position.

In any of the following cases, TCLim set value is initialized.

Controller power ON
Motor On
SFree, SLock
Reset
STOP button or Ctrl + C key

See Also

TC, TCLim Function, TCSpeed

S

TCLim Statement

428 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TCLim Statement Example

Speed 5
Go ApproachPoint

'Set the Z axis torque limit to 20 %
TCLim -1, -1, 20, -1
'Set the speed in torque control to 5 %
TcSpeed 5

TC On
Go ContactPoint
Wait 3
Go ApproachPoint
TC Off

TCLim Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 429

TCLim Function

Returns the torque limit of specified joint.

Syntax

TCLim (jointNumber)

Parameters

ｊointNumber Specifies the joint number to retrieve the torque limit from using an expression or
numeric value.

Return values

Returns the integer number representing the current torque limit (1 to 100). -1 means the torque limit
is invalid.

See Also

TC, TCLim, TCSpeed

TCLim Fuction Example

Print "Current Z axis torque limit:", TCLim(3)

F

TCPSpeed Function

430 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TCPSpeed Function

Returns the calculated current tool center point (TCP) speed.

Syntax
TCPSpeed

Return Values
Real value containing the calculated current tool center point speed in mm/second.

Description
Use TCPSpeed to get the calculated current speed of the tool center point in mm/second when
executing a CP (Continuous Path) motion command. CP motion commands include Move, TMove,
Arc, Arc3, CVMove, and Jump3CP. This is not the actual tool center point speed. It is the speed that
the system has calculated for the tool center point at the time the function is called.

The motor compliance lag is excluded from the calculation.
If the robot is executing a PTP (Point to Point) motion command, this function returns “0”.

See Also
AccelS, CurPos, InPos, SpeedS

TCPSpeed Function Example

Function MoveTest
AccelS 4000, 4000
SpeedS 200
Xqt ShowTCPSpeed
Do
 Move P1
 Move P2
Loop

Fend

Function ShowTCPSpeed
 Do
 Print "Current TCP speed is: ", TCPSpeed
 Wait .1
 Loop
Fend

F

TCSpeed Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 431

TCSpeed Statement

Specifies the speed limit in the torque contol.

Syntax

TCSpeed [speed]

Parameters

speed Specifies the proportion to the maximum speed (1 to100 / unit: %) using an expression or
numeric value.

Description

Under the torque control, the speed is limited to the TCSpeed setting despite of the speed settings of
such as Speed command.
Error occurs if the speed goes over the limit in the torque control.

In any of the following cases, TCSpeed set value is initialized to 100%.

Controller power ON
Motor On
SFree, SLock
Reset
STOP button or Ctrl + C key

See Also

TC, TCLim, TCSpeed Function

TCSpeed Statement Example

Speed 5
Go ApproachPoint

'Set the Z axis torque limit to 20 %
TCLim -1, -1, 20, -1
'Set the speed under the torque control to 5 %
TcSpeed 5

TC On
Go ContactPoint
Wait 3
Go ApproachPoint
TC Off

F

TCSpeed Function

432 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TCSpeed Function

Returns the speed limit in the torque control.

Syntax
TCSpeed

Return Values
Returns the integer number (1 to 100) representing the current speed limit.

See Also
TC, TCSpeed, TCLim

TCSpeed Function Example

Integer var
var = TCSpeed

F

TGo Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 433

TGo Statement

Executes Point to Point relative motion, in the current tool coordinate system.

Syntax
TGo destination [CP] [searchExpr] [!...!]

Parameters
destination The target destination of the motion using a point expression.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and
other commands during motion.

Description

Executes point to point relative motion in the current tool coordinate system.

Arm orientation attributes specified in the destination point expression are ignored. The manipulator
keeps the current arm orientation attributes. However, for a 6-Axis manipulator, the arm orientation
attributes are automatically changed in such a way that joint travel distance is as small as possible.

The Till modifier is used to complete TGo by decelerating and stopping the robot at an intermediate
travel position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during
motion.

When parallel processing is used, other processing can be executed in parallel with the motion
command.

The CP parameter causes acceleration of the next motion command to start when the deceleration
starts for the current motion command. In this case the robot will not stop at the destination
coordinate and will continue to move to the next point.

See Also
Accel, CP, Find, !....! Parallel Processing, Point Assignment, Speed, Till, TMove, Tool

>

S

TGo Statement

434 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TGo Statement Example

> TGo XY(100, 0, 0, 0) 'Move 100mm in X direction
 '(in the tool coordinate system)
Function TGoTest

 Speed 50
 Accel 50, 50
 Power High

 Tool 0
 P1 = XY(300, 300, -20, 0)
 P2 = XY(300, 300, -20, 0) /L

 Go P1
 Print Here
 TGo XY(0, 0, -30, 0)
 Print Here

 Go P2
 Print Here
 TGo XY(0, 0, -30, 0)
 Print Here

Fend

[Output]
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -50.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 300.000 Y: 300.000 Z: -50.000 U: 0.000 V: 0.000 W: 0.000 /L /0

Till Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 435

Till Statement

Specifies and displays input condition that, if satisfied, completes the motion command
(Jump, Go, Move, etc.) in progress by decelerating and stopping the robot at
an intermediate position.

Syntax
Till [inputCondition]

Parameters
inputCondition The following functions and operators may be used in the inputCondition:

Functions ：Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemW, Ctr

Operators ：And, Or, Xor
Example Till Sw(5) = On
 Till Sw(5) = On And Till(6) = Off

Description

The Till statement can be used by itself or as a search expression in a motion command statement.

The Till condition must include at least one of the functions above.

When variables are included, their values are computed when setting the Till condition. No use of
variable is recommended. Otherwise, the condition may be an unintended condition. Multiple Till
statements are permitted. The most recent Till condition remains current until superseded.

When parameters are omitted, the current Till definition is displayed.

Notes
Till Setting at Main Power On

At power on, the Till condition is initialized to Till Sw(0) = On.
Use of Stat or TillOn to Verify Till

After executing a motion command which uses the Till qualifier there may be cases where you want to
verify whether or not the Till condition was satisfied. This can be done through using the Stat function
or the TillOn function.

See Also

Find, Go, In, InW, Oport, Out, OutW, Jump, MemIn, MemSw, Move, Stat, Sw, TillOn

Till Statement Example
Shown below are some sample lines from programs using the Till instruction

Till Sw(1) = Off 'Specifies Till condition (Input bit 1 off)
Go P1 Till 'Stop if previous line condition is satisfied
Till Sw(1) = On And Sw($1) = On 'Specify new Till condition
Move P2 Till 'Stop if previous line condition satisfied
Move P5 Till Sw(10) = On 'Stop if condition on this line
 'is satisfied

> S

TillOn Function

436 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TillOn Function

Returns the current Till status.

Syntax
TillOn

Return Values
True if the Till condition occurred in the previous motion command using Till.

Description
TillOn returns True if Till condition occurred.

TillOn is equivalent to ((Stat(1) And 2) <> 0).

See Also

EStopOn, SafetyOn, Sense, Stat, Till

TillOn Function Example

Go P0 Till Sw(1) = On
If TillOn Then
 Print "Till condition occurred during move to P0"
EndIf

F

Time Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 437

Time Statement

Specifies and displays the current time.

Syntax
(1) Time hours, minutes, seconds
(2) Time

Parameters
hours The hour of the day to set the controller clock to. This is an function expression

between 1 and 24.
minutes The minute of the day to set the controller clock to. This is an function

expression between 0 and 59.
seconds The second of the day to set the controller clock to. This is an function

expression between 0 and 59.

Return Values
If parameters are omitted, displays the current time in 24 hour format.

Description
Specifies the current time.

The time specification is in 24 hour format.

See Also
Date, Time$

Time Statement Example

> Time
The current time is 10:15:32

> Time 1,5,0
> Time
The current time is 1:05:15

>

Time Function

438 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Time Function

Returns the controller accumulated operating time.

Syntax
Time(unitSelect)

Parameters
unitSelect An integer number ranging from 0 to 2. This integer specifies which unit of time

the controller returns:
0: hours
1: minutes
2: seconds

Description
Returns the controller accumulated operating time as an integer.

See Also
Hour

Time Function Example
Shown below are a few examples from the command window:

Function main
 Integer h, m, s

 h = Time(0) 'Store the time in hours
 m = Time(1) 'Store the time in minutes
 s = Time(2) 'Store the time in seconds
 Print "This controller has been used:"
 Print h, "hours, ",
 Print m, "minutes, ",
 Print s, "seconds"
Fend

F

Time$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 439

Time$ Function

Returns the system time.

Syntax
Time$

Return Values
A string containing the current time in 24 hour format hh:mm:ss.

Description
Time$ is used to get the system time in a program statement. To set the system time, you must use
the Time command from the command window.

See Also
Date, Date$, Time

Time$ Function Example

Print "The current time is: ", Time$

F

TLClr Statement

440 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TLClr Statement

Clears (undefines) a tool coordinate system.

Syntax
TLClr toolNumber

Parameters
toolNumber Integer expression representing which of the 3 tools to clear (undefine).

(Tool 0 is the default tool and cannot be cleared.)

Description
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLSet

TLClr Statement Example

TLClr 1

> S

TLDef Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 441

TLDef Function

Returns tool definition status.

Syntax
TLDef (toolNumber)

Parameters
toolNumber Integer expression representing which tool to return status for.

Return Values
True if the specified tool has been defined, otherwise False.

See Also
Arm, ArmClr, ArmSet, ECPSet, Local, LocalClr, Tool, TLClr, TLSet

TLDef Function Example

Function DisplayToolDef(toolNum As Integer)

 If TlDef(toolNum) = False Then
 Print "Tool ", toolNum, "is not defined"
 Else
 Print "Tool ", toolNum, ": ",
 Print TlSet(toolNum)
 EndIf
Fend

> F

TLSet Statement

442 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TLSet Statement

Defines or displays a tool coordinate system.

Syntax
(1) TLSet toolNum, toolDefPoint
(2) TLSet toolNum
(3) TLSet

Parameters
toolNum Integer number from 1 to 15 representing which of 15 tools to define. (Tool 0 is the

default tool and cannot be modified.)
toolDefPoint Pnumber or P(expr) or point label or point expression.

Return Values
When parameters are omitted, displays all TLSet Definition.
When only the tool number is specified, displays specified TLSet Definition.

Description
Defines the tool coordinate systems Tool 1, Tool 2 or Tool 3 by specifying tool coordinate system
origin and rotation angle in relation to the Tool 0 coordinate system (Hand coordinate system).

TLSet 1, XY(50,100,-20,30)

TLSet 2, P10 +X(20)

In this case, the coordinate values of P10 are referenced and 20 is added to the X value. Arm attribute
and local coordinate system numbers are ignored.

 TLSET 1, XY(100, 60, -20, 30)

Rotation angle (c shown in the next figure)

Position for Z axis

Position for Y axis (b shown in the next figure)

Position for X axis (a shown in the next figure)

Tool coordinate system number

> S

TLSet Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 443

TlSet for 6-Axis robots
The origin of Tool 0 is the flange side of the sixth joint. When all joints are at the 0 degree position,
the Tool 0 coordinate system's X axis is aligned with the robot coordinate system's Z axis, the Y axis is
aligned with the robot coordinate system's X axis, and the Z axis is perpendicular to the flange face,
and is aligned with the robot coordinate system's Y axis, as shown in the figure below:

TLSet Statement

444 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Tool 0 coordinate systems are defined for ceiling and wall mounted robots as shown in the figures
below.

Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Notes
TLSet values are maintained

The TLSet values are preserved. Use TLClr to clear a tool definition.

See Also

Tool, Arm, ArmSet, Point Expression, TLClr, TLSet Function

TLSet Statement Example

The example shown below shows a good test which can be done from the command window to help
understand the difference between moving when a tool is defined and when no tool is defined.

> TLSet 1, XY(100, 0, 0, 0) 'Define tool coordinate system for
 'Tool 1 (plus 100 mm in x direction
 'from hand coordinate system)
> Tool 1 'Selects Tool 1 as defined by TLSet
> TGo P1 'Positions the Tool 1 tip position at P1
> Tool 0 'Tells robot to use no tool for future motion
> Go P1 'Positions the center of the U-Joint at P1

TLSet Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 445

TLSet Function

Returns a point containing the tool definition for the specified tool.

Syntax
TLSet(toolNumber)

Parameters
toolNumber Integer expression representing the number of the tool to retrieve.

Return Values
A point containing the tool definition.

See Also
TLSet Statement

TLSet Function Example

P1 = TLSet(1)

F

TMOut Statement

446 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TMOut Statement

Specifies the number of seconds to wait for the condition specified with the Wait

instruction to come true before issuing a timeout error (error 2280).

Syntax
TMOut seconds

Parameters
seconds Real expression representing the number of seconds until a timeout occurs.

Valid range is from 0 to 2147483 seconds in 1 second intervals.

Description
TMOut sets the amount of time to wait (when using the Wait instruction) until a timeout error is issued.
If a timeout of 0 seconds is specified, then the timeout is effectively turned off. In this case the Wait
instruction waits indefinitely for the specified condition to be satisfied.

The default initial value for TMOut is 0.

See Also
In, MemSw, OnErr, Sw, TW, Wait

TMOut Statement Example

TMOut 5
Wait MemSw(0) = On

> S

TMove Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 447

TMove Statement

Executes linear interpolation relative motion, in the current tool coordinate system

Syntax
TMove destination [ROT] [CP] [searchExpr] [!...!]

Parameters
destination The target destination of the motion using a point expression.
ROT Optional. Decides the speed/acceleration/deceleration in favor of tool

rotation.
CP Optional. Specifies continuous path motion.
searchExpr Optional. A Till or Find expression.

Till | Find
Till Sw(expr) = {On | Off}
Find Sw(expr) = {On | Off}

!...! Optional. Parallel Processing statements can be added to execute I/O and
other commands during motion.

Description

Executes linear interpolated relative motion in the current tool coordinate system.

Arm orientation attributes specified in the destination point expression are ignored. The manipulator
keeps the current arm orientation attributes. However, for a 6-Axis manipulator, the arm orientation
attributes are automatically changed in such a way that joint travel distance is as small as possible.

TMove uses the SpeedS speed value and AccelS acceleration and deceleration values. Refer to
Using TMove with CP below on the relation between the speed/acceleration and the
acceleration/deceleration. If, however, the ROT modifier parameter is used, TMove uses the SpeedR
speed value and AccelR acceleration and deceleration values. In this case SpeedS speed value and
AccelS acceleration and deceleration value have no effect.

Usually, when the move distance is 0 and only the tool orientation is changed, an error will occur.
However, by using the ROT parameter and giving priority to the acceleration and the deceleration of
the tool rotation, it is possible to move without an error. When there is not an orientational change with
the ROT modifier parameter and movement distance is not 0, an error will occur.

Also, when the tool rotation is large as compared to move distance, and when the rotation speed
exceeds the specified speed of the manipulator, an error will occur. In this case, please reduce the
speed or append the ROT modifier parameter to give priority to the rotational speed/ acceleration/
deceleration.

The Till modifier is used to complete TMove by decelerating and stopping the robot at an intermediate
travel position if the current Till condition is satisfied.

The Find modifier is used to store a point in FindPos when the Find condition becomes true during
motion.

When parallel processing is used, other processing can be executed in parallel with the motion
command.

> S

TMove Statement

448 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Notes
Using TMove with CP

The CP parameter causes the arm to move to destination without decelerating or stopping at the point
defined by destination. This is done to allow the user to string a series of motion instructions together
to cause the arm to move along a continuous path while maintaining a specified speed throughout all
the motion. The TMove instruction without CP always causes the arm to decelerate to a stop prior to
reaching the point destination.

See Also

AccelS, CP, Find, !....! Parallel Processing, Point Assignment, SpeedS, TGo, Till, Tool

TMove Statement Example

> TMove XY(100, 0, 0, 0) 'Move 100mm in the X
 'direction (in the tool coordinate system)
Function TMoveTest

 Speed 50
 Accel 50, 50
 SpeedS 100
 AccelS 1000, 1000
 Power High

 Tool 0
 P1 = XY(300, 300, -20, 0)
 P2 = XY(300, 300, -20, 0) /L

 Go P1
 Print Here
 TMove XY(0, 0, -30, 0)
 Print Here

 Go P2
 Print Here
 TMove XY(0, 0, -30, 0)
 Print Here

Fend

[Output]
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -50.000 U: 0.000 V: 0.000 W: 0.000 /R /0
 X: 300.000 Y: 300.000 Z: -20.000 U: 0.000 V: 0.000 W: 0.000 /L /0
 X: 300.000 Y: 300.000 Z: -50.000 U: 0.000 V: 0.000 W: 0.000 /L /0

Tmr Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 449

Tmr Function

Tmr function which returns the amount of time in seconds which has elapsed since
the timer was started.

Syntax
Tmr(timerNumber)

Parameters
timerNumber Integer expression representing which of the 16 timers to check the time of.

Return Values
Elapsed time for the specified timer as a real number in seconds. Timer range is from 0 to approx.
1.7E+31. Timer resolution is 0.001 seconds.

Description
Returns elapsed time in seconds since the timer specified was started. 16 timers are available
numbered 0 to 15. Unlike the ElapsedTime function, the Tmr function counts the time while the
program halted.

Timers are reset with TmReset.

Real overhead

TmReset 0
overHead = Tmr(0)

See Also

ElapsedTime Function, TmReset

Tmr Function Example

TmReset 0 'Reset Timer 0
For i = 1 To 10 'Perform operation 10 times
 GoSub Cycle
Next
Print Tmr(0) / 10 'Calculate and display cycle time

F

TmReset Statement

450 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TmReset Statement

Resets the timers used by the Tmr function.

Syntax
TmReset timerNumber

Parameters
timerNumber Integer expression representing which of the 16 timers to reset. (0 to 15)

Description
Resets and starts the timer specified by timerNumber. 16 timers are available, numbered from 0 to 15.

Use the Tmr function to retrieve the elapsed time for a specific timer.

See Also
Tmr

TmReset Statement Example

TmReset 0 'Reset Timer 0
For i = 1 To 10 'Perform operation 10 times
 GoSub CYL
Next
Print Tmr(0)/10 'Calculate and display cycle time

S

Toff Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 451

Toff Statement

Turns off execution line display on the seven-segment.

Syntax
Toff

Description
Excution line will not be displayed on the seven-segment.

See Also
Ton

Toff Statement Example

Function main
 Ton MyTask
 ...
 Toff
Fend

S

Tool Statement

452 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Tool Statement

Selects or displays the current tool.

Syntax
(1) Tool toolNumber
(2) Tool

Parameters
toolNumber Optional. Integer expression from 0 to 15 representing which of 16 tool definitions to

use with subsequent motion instructions.

Return Values
Displays current Tool when used without parameters.

Description
Tool selects the tool specified by the tool number (toolNum). When the tool number is “0”, no tool is
selected and all motions are done with respect to the center of the end effector joint. However, when
Tool entry 1, 2, or 3 is selected motion is done with respect to the end of the tool as defined with the
tool definition.

Note
Power Off and Its Effect on the Tool Selection

Turning main power off does not change the tool coordinate system selection.

See Also

TGo, TLSet, Tmove

Tool Statement Example
The example shown below shows a good test which can be done from the command window to help
understand the difference between moving when a tool is defined and when no tool is defined.

>tlset 1, 100, 0, 0, 0 'Define tool coordinate system for
 'Tool 1 (plus 100 mm in x direction
 'from hand coordinate system)
>tool 1 'Selects Tool 1 as defined by TLSet
>tgo p1 'Positions the Tool 1 tip position at P1
>tool 0 'Tells robot to use no tool for future motion
>go p1 'Positions the center of the U-Joint at P1

> S

Tool Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 453

Tool Function

Returns the current tool number.

Syntax
Tool

Return Values
Integer containing the current tool number.

Description
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
Tool Statement

Tool Function Example

Integer savTool

savTool = Tool
Tool 2
Go P1
Tool savTool

F

Ton Statement

454 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Ton Statement

Specifies task Turns on debug trace.

Syntax
Ton taskIdentifier
Ton

Parameters
taskIdentifier Specifies the task name or the task number.

A task name is the function name used in an Xqt statement or a function started
from the Run window or Operator window. If an integer expression is used, the
range is from 1 to 16 for normal tasks and from 257 to 261 for trap tasks.

Description

Execution line of task 1 is displayed in initial status.
Ton statement displays the specified task execution line on the seven-segment.
When taskIdentifier is omitted, the task execution line with Ton statement execution is displayed on
the seven-segment.

See Also
Toff

Ton Statement Example

Function main
 Ton MyTask
 ...
 Toff
Fend

S

Trap Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 455

Trap Statement

Defines interrupts and what should happen when they occur.

Syntax
Trap trapNumber, condition GoTo { label}
Trap trapNumber, condition Call funcname
Trap trapNumber, condition Xqt funcname
Trap trapNumber

Parameters
trapNumber Integer number from 1 to 4 representing which of 4 Trap numbers to use.

(SPEL+ supports up to 4 active Trap interrupts at the same time.)
condition The following functions and operators may be used in the condition expression:

Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemW, Ctr
Operators : And, Or, Xor
Example Trap 1, Sw(5) = On Call, TrapFunc
 Trap 1, Sw(5) = On And Till(6) = Off, Call TrapFunc

label The label where program execution is to be transferred when Trap condition is
satisfied.

funcName The function that is executed when Call or Xqt when the Trap condition is
satisfied.
The function with argument cannot be specified.

Note
The functionality of Trap Call in EPSON RC+ 4.x or before has been changed to Trap Xqt in EPSON
RC+ 5.0. The functionality of Trap GoSub in EPSON RC+ 4.x or before has been removed. Use
Trap Call instead of Trap GoSub.

Description

A Trap executes interrupt processing which is specified by GoTo, Call, or Xqt when the specified
condition is satisfied.

The Trap condition must include at least one of the functions above.

When variables are included in the Trap condition, their values are computed when setting the Trap
condition. No use of variable is recommended. Otherwise, the condition may be an unintended
condition.

Once the interrupt process is executed, its Trap setting is cleared. If the same interrupt process is
necessary, the Trap instruction must execute it again.

To cancel a Trap setting simply execute the Trap instruction with only the trapNumber parameter. e.g.
"Trap 3" cancels Trap #3.
When the Function that executed Trap GoTo ends (or exit), the Trap Goto will be canceled
automatically.
When the declared task ends, Trap Call will be cancled.
Trap Xqt will be canceld when all tasks have stopped.

If GoTo is specified
The command being executed will be processed as described below, then control branches to the
specified line number or label.
- Any arm motion will pause immediately
- Waiting status by the Wait or Input commands will discontinue
- All other commands will complete execution before control branches

S

Trap Statement

456 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

If Call is specified
After executing the same process as GoTo described above, then control branches to the specified
line number or label.
Once the function ends, program execution returns to the next statement after the statement where
program interruption occurred. Call statements cannot be used in the Trap processing function.
When an error occurs in the trap process function, error handling with OnErr will be invalid and an
error will occur.

If Xqt is specified
Program control executes the specified function as an interrupt processing task. In this case, the task
which executes the Trap command will not wait for the Trap function to finish and will continue to
execute.

See Also

Call, Era, Erl, Err, Ert, ErrMsg$, GoSub, GoTo, OnErr, Xqt

Trap Statement Example
<Example 1> Error process defined by User
Sw(0) Input is regarded as an error input defined by user.

Function Main
 Trap 1 Sw(0)= On GoTo EHandle 'Defines Trap
 .
 .
 .
EHandle:
 On 31 'Signal tower lights
 OpenCom #1
 Print #1, "Error is issued"
 CloseCom #1
Fend

<Example 2> Usage like multi-tasking

Function Main
 Trap 2 MemSw(0) = On Or MemSw(1) = On Call Feeder
 .
 .
 .
Fend
.
Function Feeder
 Select TRUE
 Case MemSw(0) = On
 MemOff 0
 On 2
 Case MemSw(1) = On
 MemOff 1
 On 3
 Send

 ' Re-arm the trap for next cycle
 Trap 2 MemSw(0) = On Or MemSw(1) = On Xqt Feeder
Fend

Trim$ Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 457

Trim$ Function

Returns a string equal to specified string without leading or trailing spaces.

Syntax
Trim$(string)

Parameters
string String expression.

Return Values
Specified string with leading and trailing spaces removed.

See Also
LTrim$, RTrim$

Trim$ Function Example

str$ = " data "
str$ = Trim$(str$) ' str$ = "data"

F

TW Function

458 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

TW Function

Returns the status of the Wait, WaitNet, and WaitSig commands.

Syntax
TW

Return Values
Returns False if Wait condition is satisfied within the time interval.
Returns True if the time interval has elapsed.

Description
The Timer Wait function TW returns the status of the preceding Wait condition with time interval with a
False (Wait condition was satisfied) or a True (time interval has elapsed).

See Also
TMOut, Wait

TW Function Example

Wait Sw(0) = On, 5 'Wait up to 5 seconds for input bit 0 On
If TW = True Then
 Print “Time Up” 'Display “Time UP” after 5 seconds
EndIf

F

UBound Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 459

UBound Function

Returns the largest available subscript for the indicated dimension of an array.

Syntax
UBound (arrayName [, dimension])

Parameters
arrayName Name of the array variable; follows standard variable naming conventions.
dimension Optional. Integer expression indicating which dimension's upper bound is

returned. Use 1 for the first dimension, 2 for the second, and 3 for the third. If
dimension is omitted, 1 is assumed.

See Also

Redim

UBound Function Example

Integer i, a(10)

For i=0 to UBound(a)
 a(i) = i
Next

F

UCase$ Function

460 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

UCase$ Function

Returns a string that has been converted to uppercase.

Syntax
UCase$ (string)

Parameters
string String expression.

Return Values
The converted uppercase string.

See Also
LCase$, LTrim$, Trim$, RTrim$

UCase$ Function Example

str$ = "Data"
str$ = UCase$(str$) ' str$ = "DATA"

F

Val Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 461

Val Function

Converts a character string that consists of numbers into their numerical value and returns
that value.

Syntax

Val(string)

Parameters
string String expression which contains only numeric characters. The string may also contain

a prefix: &H (hexadecimal), &O (octal), or &B (binary).

Return Values
Returns an integer or floating point result depending upon the input string. If the input string has a
decimal point character than the number is converted into a floating point number. Otherwise the
return value is an integer.

Description
Val converts a character string of numbers into a numeric value. The result may be an integer or
floating point number. If the string passed to the Val instruction contains a decimal point then the
return value will be a floating point number. Otherwise it will be an integer.

See Also
Abs, Asc, Chr$, Int, Left$, Len, Mid$, Mod, Right$, Sgn, Space$, Str$

Val Function Example
The example shown below shows a program which coverts several different strings to numbers and
then prints them to the screen.

Function ValDemo
 String realstr$, intstr$
 Real realsqr, realvar
 Integer intsqr, intvar

 realstr$ = "2.5"
 realvar = Val(realstr$)
 realsqr = realvar * realvar
 Print "The value of ", realstr$, " squared is: ", realsqr

 intstr$ = "25"
 intvar = Val(intstr$)
 intsqr = intvar * intvar
 Print "The value of ", intstr$, " squared is: ", intsqr
Fend

Here's another example from Command window.

> Print Val("25.999")
25.999
>

F

VxCalib Statement

462 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

VxCalib Statement
Note: This command is only for use with external vision systems and cannot be used with Vision Guide.

Creates calibration data for an external vision system.

Syntax
(1) VxCalib CalNo
(2) VxCalib CalNo, CamOrient, P(pixel_st : pixel_ed), P(robot_st : robot_ed) [,TwoRefPoints]
(3) VxCalib CalNo, CamOrient, P(pixel_st : pixel_ed), P(robot_st : robot_ed), P(ref0) [,P(ref180)]

Parameters

CalNo Integer expression that specifies the calibration data number. The range is from 0 to
15; up to 16 calibrations may be defined.

CamOrient Integer expression that specifies the camera mounting direction using the following
values:
1 to 3: Available only for syntax (2).
4 to 7: Available only for syntax (3).
1: Standalone
2: Fixed downward
3: Fixed upward
4: Mobile on Joint #2 (SCARA robot)
5: Mobile on Joint #4 (SCARA robot)
6: Mobile on Joint #5 (6-axis robot)
7: Mobile on Joint #6 (6-axis robot)

P(pixel_st : pixel_ed)
Specifies the Pixel coordinates (X, Y only) using the continuous point data.

P(robot_st : robot_ed)
Specifies the robot coordinates using the continuous point data.
The robot coordinates must be set as TOOL: 0, ARM: 0.

TwoRefPoints Available for syntax (2).
True, when using two measuring points. False, when using one measuring point.
Specifying two measuring points makes the calibration more accurate.
Optional.
Default: False

P(ref0) Available for syntax (3).
Specifies the robot coordinates of the reference point using the point data.

P(ref180) Available for syntax (3).
Specifies the robot coordinates of the second reference point using the point data.
Specifying two reference points makes the calibration more accurate.
Optional.

Description

The VxCalib comand calculates the vision calibration data for the specified calibration number using
the specified camera orientation, pixel coordinates, robot coordinates, and reference points (Mobile
camera only) given by the parameter.

When you specify only CalNo, the point data and other settings you defined are displayed (only from
the Command Window).

VxCalib Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 463

The following figure shows the coordinates system of the pixel coordinates. (Units: pixel)
 +X

+Y

0, 0

0°

+Θ

For the pixel coordinates and robot coordinates, set the top left position of the window as Point 1 and
set the bottom right position as Point 9 according to the order in the table below.
It is classified into the four categories by the parameter CamOrient and TwoRefPoints.

1) CamOrient = 1 to 3 (Standalone, Fixed Downward, Fixed Upward), TwoRefPoints = False

Data order Position Pixel coordinates Robot coordinates
1 Top left Detection coordinates 1 Measuring point coordinates 1
2 Top center Detection coordinates 2 Measuring point coordinates 2
3 Top right Detection coordinates 3 Measuring point coordinates 3
4 Center right Detection coordinates 4 Measuring point coordinates 4
5 Center Detection coordinates 5 Measuring point coordinates 5
6 Center left Detection coordinates 6 Measuring point coordinates 6
7 Bottom left Detection coordinates 7 Measuring point coordinates 7
8 Bottom center Detection coordinates 8 Measuring point coordinates 8
9 Bottom right Detection coordinates 9 Measuring point coordinates 9

2) CamOrient = 2 (Fixed Downward), TwoRefPoints = True
Note: When the tool is exactly defined, TwoRefPoints is not necessary and should be set to False.

By setting TwoRefPoints to True, two measuring points are used for each calibration position, which
makes the calibration more accurate. 18 robot points with U axis: 0 degree / 180 degrees are required.
After setting 1 to 9 measuring points coordinates, turn the U axis by 180 degrees and set the
measuring point coordinates 10 to 18 where the hand (such as the rod) is positioned at the calibration
target position.

Data order Position Pixel coordinates Robot coordinates U axis
1 Top left Detection coordinates 1 Measuring point coordinates 1

0 degree

2 Top center Detection coordinates 2 Measuring point coordinates 2
3 Top right Detection coordinates 3 Measuring point coordinates 3
4 Center right Detection coordinates 4 Measuring point coordinates 4
5 Center Detection coordinates 5 Measuring point coordinates 5
6 Center left Detection coordinates 6 Measuring point coordinates 6
7 Bottom left Detection coordinates 7 Measuring point coordinates 7
8 Bottom center Detection coordinates 8 Measuring point coordinates 8
9 Bottom right Detection coordinates 9 Measuring point coordinates 9

10 Top left - - - Measuring point coordinates10

180
degrees

11 Top center - - - Measuring point coordinates11
12 Top right - - - Measuring point coordinates12
13 Center right - - - Measuring point coordinates13
14 Center - - - Measuring point coordinates14
15 Center left - - - Measuring point coordinates15
16 Bottom left - - - Measuring point coordinates16
17 Bottom center - - - Measuring point coordinates17
18 Bottom right - - - Measuring point coordinates18

VxCalib Statement

464 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

3) CamOrient = 3 (Fixed Upward), TwoRefPoints = True
Note: When the tool is exactly defined, TwoRefPoints is not necessary and should be set to False.

By setting TwoRefPoints to True, two detection points are used, which makes the calibration more
accurate. For only the pixel coordinates, 18 points of U axis: 0 degree / 180 degrees are required.
After setting 1 to 9 detection coordinates at the each measuring point coordinates at 0 degrees, set
the detection coordinates for points 10 to 18 at 180 degrees.

Data order Position Pixel coordinates Robot coordinates U axis
1 Top left Detection coordinates 1 Measuring point coordinates 1

0 degree

2 Top center Detection coordinates 2 Measuring point coordinates 2
3 Top right Detection coordinates 3 Measuring point coordinates 3
4 Center right Detection coordinates 4 Measuring point coordinates 4
5 Center Detection coordinates 5 Measuring point coordinates 5
6 Center left Detection coordinates 6 Measuring point coordinates 6
7 Bottom left Detection coordinates 7 Measuring point coordinates 7
8 Bottom center Detection coordinates 8 Measuring point coordinates 8
9 Bottom right Detection coordinates 9 Measuring point coordinates 9

10 Top left Detection coordinates 10 - - -

180
degrees

11 Top center Detection coordinates 11 - - -
12 Top right Detection coordinates 12 - - -
13 Center right Detection coordinates 13 - - -
14 Center Detection coordinates 14 - - -
15 Center left Detection coordinates 15 - - -
16 Bottom left Detection coordinates 16 - - -
17 Bottom center Detection coordinates 17 - - -
18 Bottom right Detection coordinates 18 - - -

4) CamOrient = 4 to 7

Data order Position Pixel coordinates Robot coordinates
1 Top left Detection coordinates 1 Measuring point coordinates 1
2 Top center Detection coordinates 2 Measuring point coordinates 2
3 Top right Detection coordinates 3 Measuring point coordinates 3
4 Center right Detection coordinates 4 Measuring point coordinates 4
5 Center Detection coordinates 5 Measuring point coordinates 5
6 Center left Detection coordinates 6 Measuring point coordinates 6
7 Bottom left Detection coordinates 7 Measuring point coordinates 7
8 Bottom center Detection coordinates 8 Measuring point coordinates 8
9 Bottom right Detection coordinates 9 Measuring point coordinates 9

Notes
In addition to the tables above, specify the robot coordinates of the reference points.
Using the two reference points makes the calibration more accurate. In this case, it needs two points
of U axis: 0 degree / 180 degrees.
After setting the first reference points coordinates, turn the U axis by 180 degrees and set the second
reference points coordinates where the hand (such as the rod) is positioned at the calibration target
position. When the tool is exactly defined, the two reference points are not necessary.

See Also

VxTrans Function, VxCalInfo Function, VxCalDelete, VxCalSave, VxCalLoad

VxCalib Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 465

VxCalib Statement Example

Function MobileJ2

 Integer i
 Double d(8)

 Robot 1
 LoadPoints "MobileJ2.pts"

 VxCalib 0, 4, P(21:29), P(1:9), P(0)

 If (VxCalInfo(0, 1) = True) Then
 For i = 0 To 7
 d(i) = VxCalInfo(0, i + 2)
 Next i
 Print "Calibration result:"
 Print d(0), d(1), d(2), d(3), d(4), d(5), d(6), d(7)

 P52 = VxTrans(0, P51, P50)
 Print "Coordinates conversion result:"
 Print P52
 SavePoints "MobileJ2.pts"
 VxCalSave "MobileJ2.caa"
 Else
 Print "Calibration failed"
 EndIf

Fend

VxCalDelete Statement

466 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

VxCalDelete Statement
Note: This command is only for use with external vision systems and cannot be used with Vision Guide.

Deletes the calibration data for an external vision system calibration.

Syntax
VxCalDelete CalNo

Parameters
CalNo Integer expression that specifies the calibration data number. The range is from 0 to

15; up to 16 calibrations may be defined.
Description

Deletes the calibration data defined by the specified calibration number.

See Also
VxCalib, VxTrans Function, VxCalInfo Function, VxCalSave, VxCalLoad

VxCalDelete Statement Example

VxCalDelete "MobileJ2.caa"

VxCalLoad Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 467

VxCalLoad Statement
Note: This command is only for use with external vision systems and cannot be used with Vision Guide.

Loads the calibration data for an external vision system calibration from a file.

Syntax

VxCalLoad FileName

Parameters
FileName Specifies the file name from which the calibration data is loaded using a string

expression.
The file extension is “.caa”. If omitted, “.caa” is automatically added.
For extensions other than “.caa”, they are automatically changed to “.caa”.

Description
Loads the calibration data from the specified file in the current project.

See Also
VxCalib, VxTrans Function, VxCalInfo Function, VxCalDelete, VxCalSave

VxCalLoad Statement Example

VxCalLoad "MobileJ2.caa"

VxCalInfo Function

468 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

VxCalInfo Function
Note: This command is only for use with external vision systems and cannot be used with Vision Guide.

Returns the calibration completion status and the calibration data.

Syntax
VxCalInfo (CalNo,CalData)

Parameters
CalNo Integer expression that specifies the calibration data number. The range is from 0 to

15; up to 16 calibrations may be defined.
CalData Specifies the calibration data type to acquire using the integer values in the table below.

CalData Calibration Data Type
1 CalComplete
2 X Avg Error [mm]
3 X Max error [mm]
4 X mm per pixel [mm]
5 X tilt [deg]
6 Y Avg error [mm]
7 Y Max error [mm]
8 Y mm per pixel [mm]
9 Y tilt [deg]

Return Value

Returns the specified calibration data. For CalData = 1, the data type is Boolean. For all other data,
the data type is Double.

Description
You can check which calibration has defined calibration data.
Also, you can retrieve the calibration data values.

See Also
VxCalib, VxTrans Function, VxCalDelete, VxCalSave, VxCalLoad

VxCalInfo Function Example
Print VxCalInfo(0, 1)

VxCalSave Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 469

VxCalSave Statement
Note: This command is only for use with external vision systems and cannot be used with Vision Guide.

Saves the calibration data for an external vision system calibration to a file.

Syntax
VxCalSave FileName

Parameters

FileName Specifies the file name from which the calibration data is loaded using a string
expression.
The extension is “.caa”. If omitted, “.caa” is automatically added.
For extensions other than “.caa”, they are automatically changed to “.caa”.

Description
Saves the calibration data with the specified file name. The file is saved in the current project. If the
file name is already existed, the calibration data is overwritten.

See Also

VxCalib, VxTrans Function, VxCalInfo Function, VxCalDelete, VxCalLoad

VxCalSave Statement Example

VxCalSave "MobileJ2.caa"

VxTrans Function

470 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

VxTrans Function
Note: This command is only for use with external vision systems and cannot be used with Vision Guide.

Converts pixel coordinates to robot coordinates and returns the converted point data.

Syntax
VxTrans (CalNo, P(pixel) [, P(camRobot)]) As Point

Parameters
CalNo Integer expression that specifies the calibration data number. The range is from 0 to

15; up to 16 calibrations may be defined.
P(pixel) Specifies the vision pixel coordinates (X,Y,U only) using point data.
P(camRobot) Optional. For a mobile camera, this is the position where the robot was located when

the image was acquired. If not specified, then the current robot position is used.
The point should be in BASE: 0, TOOL: 0, ARM: 0.

Return Value

Returns the calculated robot coordinates using the point data.

Description
This command converts pixel coordinates to robot coordinates using the calibration data of the
specified calibration number.

When using a mobile camera, specify P(camRobot) if the robot has been moved from the position
where the image was acquired. Ensure that P(camRobot) is in BASE: 0, TOOL: 0, ARM: 0. The Joint
#4 and Joint #6 angles of the set robot coordinates are used for the calculation.

See Also
VxCalib, VxCalInfo Function, VxCalDelete, VxCalSave, VxCalLoad

VxTrans Function Example

P52 = VxTrans(0, P51, P50)

Wait Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 471

Wait Statement

Causes the program to Wait for a specified amount of time or until the specified input
condition (using MemSw or Sw) is met. (Oport may also be used in the place of Sw
to check hardware outputs.)

Syntax
(1) Wait time
(2) Wait inputCondition
(3) Wait inputCondition, time

Parameters
time Real expression between 0 and 2,147,483 which represents the amount of time

to wait when using the Wait instruction to wait based on time. Time is specified in
seconds. The smallest increment is .01 seconds.

inputCondition The following functions and operators may be used in the inputCondition:
Functions : Sw, In, InW, Oport, Out, OutW, MemSw, MemIn, MemW, Ctr,

Motor, LOF, ErrorOn, SaftyOn, EstopOn, InsideBox,
InsidePlane, AtHome, PauseOn

Operators : And, Or, Xor, Mask

Description
(1) Wait with Time Interval

When used as a timer, the Wait instruction causes the program to pause for the amount of time
specified and then continues program execution.

(2) Wait for Input Conditions without Time Interval

When used as a conditional Wait interlock, the Wait instruction causes the program to wait until
specified conditions are satisfied. If after TMOut time interval has elapsed and the Wait conditions
have not yet been satisfied, an error occurs. The user can check multiple conditions with a single
Wait instruction by using the And, Mask, Or, or Xor instructions. (Please review the example
section for Wait.)

(3) Wait with Input Condition and Time Interval
Specifies Wait condition and time interval. After either Wait condition is satisfied, or the time
interval has elapsed, program control transfers to the next command. Use Tw to verify if the Wait
condition was satisfied or if the time interval elapsed.

Notes
Specifying a Timeout for Use with Wait

When the Wait instruction is used without a time interval, a timeout can be specified which sets a time
limit to wait for the specified condition. This timeout is set through using the TMOut instruction. Please
refer to this instruction for more information. (The default setting for TMOut is “0” which means no
timeout.)

Wait the change of a variable using Wait
The following program does not wait for the global variable i changing to 3.

Global Integer i
Wait i=3

When variables are included in the Waitcondition, their values are computed when setting the
Waitcondition. No use of variable is recommended. Otherwise, the condition may be an unintended
condition.

> S

Wait Statement

472 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Using Wait with Lof function
When Wait is used with Lof function, the port number for Lof function is 1 to 8 and 201 to 216.
Standard COM port (1001, 1002) is not available. If specified these ports, error occurs during the
operation.

See Also

AtHome, Ctr, ErrorOn, EstopOn, In, InsideBox, InsidePlane, InW, LOF, Mask, MemIn, MemSw,
MemW, Motor, Oport, Out, OutW, PauseOn, SaftyOn, Sw, TMOut, Tw

Wait Statement Example
The example shown below shows 2 tasks each with the ability to initiate motion instructions. However,
a locking mechanism is used between the 2 tasks to ensure that each task gains control of the robot
motion instructions only after the other task is finished using them. This allows 2 tasks to each execute
motion statements as required and in an orderly predictable fashion. MemSw is used in combination
with the Wait instruction to wait until the memory I/O #1 is the proper value before it is safe to move
again.

Function main
 Integer I
 MemOff 1
 Xqt !2, task2
 For i = 1 to 100
 Wait MemSw(1) = Off
 Go P(i)
 MemOn 1
 Next I
Fend

Function task2
 Integer i
 For i = 101 to 200
 Wait MemSw(1) = On
 Go P(i)
 MemOff 1
 Next i
Fend

' Wait until input 0 turns on
Wait Sw(0) = On

' Wait 60.5 secs and then continue execution
Wait 60.5

' Wait until input 0 is off and input 1 is on
Wait Sw(0) = Off And Sw(1) = On

' Wait until memory bit 0 is on or memory bit 1 is on
Wait MemSw(0) = On Or MemSw(1) = On

'Wait one second, then turn output 1 on
Wait 1; On 1

' Wait for the lower 3 bits of input port 0 to equal 1
Wait In(0) Mask 7 = 1

WaitNet Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 473

WaitNet Statement

Wait for TCP/IP port connection to be established.

Syntax
WaitNet #portNumber [, timeOut]

Parameters
portNumber Integer expression for port number to connect. Range is 201 to 208
timeOut Optional. Maximum time to wait for connection.

See Also
OpenNet, CloseNet

WaitNet Statement Example
For this example, two controllers have their TCP/IP settings configured as follows:

Controller #1:
Port: #201
Host Name: 192.168.0.2
TCP/IP Port: 1000

Function tcpip
 OpenNet #201 As Server
 WaitNet #201
 Print #201, "Data from host 1"
Fend

Controller #2:
Port: #201
Host Name: 192.168.0.1
TCP/IP Port: 1000

Function tcpip
 String data$
 OpenNet #201 As Client
 WaitNet #201
 Input #201, data$
 Print "received '", data$, "' from host 1"
Fend

S

WaitPos Statement

474 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

WaitPos Statement

Waits for robot to decelerate and stop at position before executing the next statement
while path motion is active.

Syntax
WaitPos

Description
Normally, when path motion is active (CP On or CP parameter specified), the motion command starts
the next statement as deceleration starts.
Use the WaitPos command right before the motion to complete the deceleration motion and go on to
the next motion.

See Also
Wait, WaitSig, CP

WaitPos Statement Example

Off 1
CP On
Move P1
Move P2
WaitPos ' wait for robot to decelerate
On 1
CP Off

S

WaitSig Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 475

WaitSig Statement

Waits for a signal from another task.

Syntax
WaitSig signalNumber [, timeOut]

Parameters
signalNumber Integer expression representing signal number to receive. Range is from 0 to 15.
timeOut Optional. Real expression representing the maximum time to wait.

Description
Use WaitSig to wait for a signal from another task. The signal will only be received after WaitSig has
started. Previous signals are ignored.

See Also
Wait, WaitPos, Signal

WaitSig Statement Example

Function Main
 Xqt SubTask
 Wait 1
 Signal 1
 .
 .
Fend

Function SubTask
 WaitSig 1
 Print "signal received"
 .
Fend

S

Weight Statement

476 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Weight Statement

Specifies or displays the inertia of the robot arm.

Syntax
Weight payloadWeight [, distance]
Weight

Parameters
payloadWeight The weight of the end effector to be carried in Kg unit.
distance The distance from the rotational center of the second arm to the center of the

gravity of the end effector in mm unit. Valid only for SCARA robots (including RS
series).

Return Values
Displays the current Weight settings when parameters are omitted.

Description
Specifies parameters for calculating Point to Point motion maximum acceleration. The Weight
instruction specifies the weight of the end effector and the parts to be carried.
The Arm length (distance) specification is necessary only for SCARA robots (including RS series). It is
the distance from the second arm rotation joint centerline to the hand/work piece combined center of
gravity.
If the equivalent value work piece weight calculated from specified parameters exceeds the maximum
allowable payload, an error occurs.
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

Potential Errors
Weight Exceeds Maximum

When the equivalent load weight calculated from the value entered exceeds the maximum load weight,
an error will occur.

Potential Damage to the Manipulator Arm
Take note that specifying a Weight hand weight significantly less than the actual work piece weight
can result in excessive acceleration and deceleration. These, in turn, may cause severe damage to
the manipulator.

Note
Weight Values Are Not Changed by Turning Main Power Off

The Weight values are not changed by turning power off.

See Also

Accel, Inertia

Weight Statement Example

This Weight instruction on the Command window displays the current setting.

> weight
2.000, 200.000
>

> S

Weight Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 477

Weight Function

Returns a Weight parameter.

Syntax
Weight(paramNumber)

Parameters
paramNumber Integer expression containing one of the values below:
 1: Payload weight
 2: Arm length

Return Values
Real number containing the parameter value.

See Also
Inertia, Weight Statement

Weight Function Example

Print "The current Weight parameters are: ", Weight(1)

F

Where Statement

478 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Where Statement

Displays current robot position data.

Syntax
Where [localNumber]

Parameters
localNumber Optional. Specifies the local coordinate system number. Local 0 is default.

See Also
Joint, PList, Pulse

Where Statement Example

>where
WORLD: X: 350.000 mm Y: 0.000 mm Z: 0.000 mm U: 0.000 deg
JOINT: 1: 0.000 deg 2: 0.000 deg 3: 0.000 mm 4: 0.000 deg
PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 0 pls

> local 1, 100,100,0,0

> where 1
WORLD1: X: 250.000 mm Y: -100.000 mm Z: 0.000 mm U: 0.000 deg
JOINT: 1: 0.000 deg 2: 0.000 deg 3: 0.000 mm 4: 0.000 deg
PULSE: 1: 0 pls 2: 0 pls 3: 0 pls 4: 0 pls

>

Wrist Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 479

Wrist Statement

Sets the wrist orientation of a point.

Syntax
(1) Wrist point, [Flip | NoFlip]
(2) Wrist

Parameters
point Pnumber or P(expr) or point label.
Flip | NoFlip Representing wrist orientation.

Return Values

When both parameters are omitted, the wrist orientation is displayed for the current robot position.
If Flip | NoFlip is ommited, the wrist orientation for the specified point is displayed.

See Also
Elbow, Hand, J4Flag, J6Flag, Wrist Function

Wrist Statement Example

Wrist P0, Flip
Wrist P(mypoint), NoFlip

P1 = 320.000, 400.000, 350.000, 140.000, 0.000, 150.000

Wrist P1, NoFlip

Go P1

Wrist P1, Flip
Go P1

> S

Wrist Function

480 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Wrist Function

Returns the wrist orientation of a point.

Syntax
Wrist [(point)]

Parameters
point Optional. Pnumber or P(expr) or point label or point expression. If point is omitted, then

the wrist orientation of the current robot position is returned.

Return Values
1 NoFlip (/NF)
2 Flip (/F)

See Also

Elbow, Hand, J4Flag, J6Flag, Wrist Statement

Wrist Function Example

Print Wrist(pick)
Print Wrist(P1)
Print Wrist
Print Wrist(P1 + P2)

F

Write Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 481

Write Statement

Writes characters to a communication port without end of line terminator.

Syntax
Write #portNumber, string

Parameters
portNumber Communications port number to write to.
string String expression that will be written to the file.

Description
Write is different from Print in that it does not add an end of line terminator.

See Also
Print, Read

Write Statement Example

OpenCom #1
For i = 1 to 10
 Write #1, data$(i)
Next i
CloseCom #1

S

WriteBin Statement

482 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

WriteBin Statement

Writes binary data to a communications port.

Syntax
WriteBin #portNumber, data
WriteBin #portNumber, array(), count

Parameters
portNumber Communications port to read from.
data Integer expression containing the data to be written.
array() Name of a byte, integer, or long array variable that contains the data bytes to be written.

Specify a one dimension array variable.
count Specifies the number of bytes to be written and must be less than or equal to the

number of array elements.
See Also

ReadBin, Write

WriteBin Statement Example

Integer i, data(100)

OpenCom #1
For i = 0 To 100
 WriteBin #1, i
Next I
WriteBin #1, data(), 100
CloseCom #1

S

Xor Operator

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 483

Xor Operator

Performs the bitwise Xor operation (exclusive OR) on two expressions.

Syntax
result = expr1 Xor expr2

Parameters
expr1, expr2 A numeric value, or a variable name.
result An integer.

Result

Returns a result of bitwise Xor operation.

Description
The Xor operator performs the bitwise Xor operation on the values of the operands. Each bit of the
result is the Xored value of the corresponding bits of the two operands.

If bit in expr1 is And bit in expr2 is The result is
0 0 0
0 1 1
1 0 1
1 1 0

See Also

And, LShift, Not, Or, Rshift

Xor Operator Example

>print 2 Xor 6
 4
>

Xqt Statement

484 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Xqt Statement

Initiates execution of a task from within another task.

Syntax
Xqt [taskNumber,] funcName [(argList)] [,Normal | NoPause | NoEmgAbort]

Parameters
taskNumber Optional. The task number for the task to be executed. The range of the task

number is 1 to 16.
funcName The name of the function to be executed.
argList Optional. List of arguments that are passed to the function procedure when it is

called. Multiple arguments are separated by commas.
taskType Optional. Usually omitted.
Normal Executes a normal task.
NoPause Executes a task that does not pause at Pause statement or Pause input signal

occurance or Safety Door Open.
NoEmgAbort Executes a task that continue processing at Emergency Stop or error occurence.

Description
Xqt starts the specified function and returns immediately.

Normally, the taskNumber parameter is not required. When taskNumber is omitted, SPEL+
automatically assigns a task number to the function, so you don't have to keep track of which task
numbers are in use.

Notes
Task Type

Speciify NoPause or NoEmgAbort as a task type to execute a task that monitors the whole controller.
However, be sure to use these special tasks based on the understanding of the task motion using
SPEL+ or restriction of special tasks.
For details of special tasks, refer to the section Special Tasks in the EPSON RC+ User’s Guide.

Unavailable Commands in NoEmgAbort Task
The following commands cannot be executed in NoEmgAbort task.
A Accel E ECP M Motor T TGo

 AccelR ECPClr Move Till
 AccelS ECPSet O OLAccel TLSet
 Arc F Fine P Pass TLClr
 Arc3 Find Plane TMove
 Arch G Go PlaneClr Tool
 Arm H Home Power Trap
 ArmSet HomeClr PTPBoost V VGet
 ArmClr HomeSet Pulse VRun

B Base Hordr Q QP VSet
 BGo I Inertia R Range W WaitPos
 BMove J JTran Reset Weight
 Box Jump S Sense X XYLim
 BoxClr Jump3 SFree Xqt
 Brake Jump3CP SLock

C CP JRange Speed
 Curve L LimitTorque SpeedR
 CVMove LimZ SpeedS
 Local
 LocalClr

S

Xqt Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 485

See Also
Function...Fend, Halt, Resume, Quit

Xqt Statement Example

Function main
 Xqt flash 'Start flash function as task 2
 Xqt Cycle(5) 'Start Cycle function as task 3

 Do
 Wait 3 'Execute task 2 for 3 seconds
 Halt flash 'Suspend the task

 Wait 3
 Resume flash 'Resume the task
 Loop
Fend

Function Cycle(count As Integer)
 Integer i

 For i = 1 To count
 Jump pick
 On vac
 Wait .2
 Jump place
 Off vac
 Wait .2
 Next i
Fend

Function flash
 Do
 On 1
 Wait 0.2
 Off 1
 Wait 0.2
 Loop
Fend

XY Function

486 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

XY Function

Returns a point from individual coordinates that can be used in a point expression.

Syntax
XY(x, y, z, u, [v, w])

Parameters
x Real expression representing the X coordinate.
y Real expression representing the Y coordinate.
z Real expression representing the Z coordinate.
u Real expression representing the U coordinate.
v Optional for 6-Axis robots. Real expression representing the V coordinate.
w Optional for 6-Axis robots. Real expression representing the W coordinate.

Return Values
A point constructed from the specified coordinates.

See Also
JA, Point Expression

XY Function Example

P10 = XY(60, 30, -50, 45) + P20

F

XYLim Statement

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 487

XYLim Statement

Sets or displays the permissible XY motion range limits for the robot.

Syntax
XYLim minX, maxX, minY, maxY, [minZ], [maxZ]
XYLim

Parameters
minX The minimum X coordinate position to which the manipulator may travel.

(The manipulator may not move to a position with the X Coordinate less than minX.)
maxX The maximum X coordinate position to which the manipulator may travel.

(The manipulator may not move to a position with the X Coordinate greater than maxX.)
minY The minimum Y coordinate position to which the manipulator may travel.

(The manipulator may not move to a position with the Y Coordinate less than minY.)
maxY The maximum Y coordinate position to which the manipulator may travel.

(The manipulator may not move to a position with the Y Coordinate greater than maxY.)
minZ Optional. The minimum Z coordinate position to which the manipulator may travel.

(The manipulator may not move to a position with the Z Coordinate less than minZ.)
maxZ Optional. The maximum Z coordinate position to which the manipulator may travel.

(The manipulator may not move to a position with the Z Coordinate greater than maxZ.)

Return Values
Displays current XYLim values when used without parameters

Description
XYLim is used to define XY motion range limits. Many robot systems allow users to define joint limits
but the SPEL+ language allows both joint limits and motion limits to be defined. In effect this allows
users to create a work envelope for their application. (Keep in mind that joint range limits are also
definable with SPEL.)

The motion range established with XYLim values applies to motion command target positions only,
and not to motion paths from starting position to target position. Therefore, the arm may move outside
the XYLim range during motion. (i.e. The XYLim range does not affect Pulse.)

Notes
Turning Off Motion Range Checking

There are many applications which don't require Motion Range limit checking and for that reason there
is a simple method to turn this limit checking off. To turn motion range limit checking off, define the
Motion Range Limit values for minX, maxX, minY, and maxY to be “0”. For example XYLim 0, 0, 0, 0.

Default Motion Range Limit Values
The default values for the XYLim instruction are "0, 0, 0, 0". (Motion Range Limit Checking is turned
off.)

Tip
Point & Click Setup for XYLim

EPSON RC+ has a point and click dialog box for defining the motion range limits. The simplest
method to set the XYLim values is by using the XYZ Limits page on the Robot Manager .

> S

XYLim Statement

488 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

See Also
Range

XYLim Statement Example

This simple example from the command window sets and then displays the current XYLim setting:

> xylim -200, 300, 0, 500

> XYLim
-200.000, 300.000, 0.000, 500.000

XYLim Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 489

XYLim Function

Returns point data for either upper or lower limit of XYLim region.

Syntax
XYLim(limit)

Parameters
limit Integer expression that specifies which limit to return.
 1: Lower limit.
 2: Upper limit.

Return Values
Point containing the specified limit coordinates.

Description
Point data is stored to the Compact Flash inside the Controller. When you execute this command, the
data is written to the Compact Flash. If a data is written to the Compact Flash frequently, it may
shorten the Compact Flash life. Using this command only when saving the point data is
recommended.

See Also
XYLim Statement

XYLim Function Example

P1 = XYLim(1)
P2 = XYLim(2)

F

XYLimClr Statement

490 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

XYLimClr Statement

Clears the XYLim definition.

Syntax
XYLimClr

See Also
XYLim, XYLimDef

XYLimClr Function Example
This example uses the XYLimClr function in a program:

Function ClearXYLim

 If XYLimDef = True Then
 XYLimClr
 EndIf
Fend

S >

XYLimDef Function

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 491

XYLimDef Function

Returns whether XYLim has been defined or not.

Syntax
XYLimDef

Return Values
True if XYLim has been defined, otherwise False.

See Also
XYLim, XYLimClr

XYLimDef Function Example
This example uses the XYLimDef function in a program:

Function ClearXYLim

 If XYLimDef = True Then
 XYLimClr
 EndIf
Fend

F

SPEL+ Error Messages

492 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

SPEL+ Error Messages
To get help for any SPEL+ error, place the cursor on the error message in the run or command windows
and press the F1 key.

There are 18 types of errors as follows.

Events
Warnings
Controller Main
Operator Panel
Teach Pendant
PC

Simulator
Interpreter
Parser
Motor control
Servo
Vision Calibration

Points
Fieldbus
Vision
GUI Builder
Hardware
EPSON RC+

Events

No. Message Remedy Note 1 Note 2
1 Controller control program started.

2 Termination due to low voltage of the
power supply.

3 Controller control program has
completed.

Stores this log when the controller
is rebooted from EPSON RC+ or
TP1.

4 Preserve variables save area has been
cleaned.

5 Function Main started.

6 Function Main started. Later same logs
are skiped.

Skip the log "Function Main
started." to prevent system history
space run out.

7 Serial number has been saved.

8 System backup has been executed.

9 System restore has been executed.

10 Robot parameters have been
initialized.

11

Offset pulse value between the
encoder origin and the home sensor
(HOFS) is changed. Additional data is
J1 value.

 J1 value
after change

J1 value
before
change

12

Offset pulse value between the
encoder origin and the home sensor
(HOFS) is changed. Additional data is
J2 value.

 J2 value
after change

J2 value
before
change

13

Offset pulse value between the
encoder origin and the home sensor
(HOFS) is changed. Additional data is
J3 value.

 J3 value
after change

J3 value
before
change

14

Offset pulse value between the
encoder origin and the home sensor
(HOFS) is changed. Additional data is
J4 value.

 J4 value
after change

J4 value
before
change

15

Offset pulse value between the
encoder origin and the home sensor
(HOFS) is changed. Additional data is
J5 value.

 J5 value
after change

J5 value
before
change

16

Offset pulse value between the
encoder origin and the home sensor
(HOFS) is changed. Additional data is
J6 value.

 J6 value
after change

J6 value
before
change

17 Move to the message saving mode.

18 Conversion of Robot Parameter file
has been executed.

20 Enable setting in Teach mode has
been saved.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 493

No. Message Remedy Note 1 Note 2

21 Enable setting in Teach mode has
been changed.

100 Device connected to Controller.

101 Console device has changed.

21:PC
22:Remote
23:OP1
26: Remote
 Ethernet

102 Display device has changed.

103 Working mode has changed.

110 Controller firmware has been installed.
1:Setup
2:Initialize
3:Upgrade
4:Recover

111 IP address has been restored. May store this log when the
controller firmware is installed.

120 PC connected to the Controller. 1:Ethernet
2:USB

121 TP connected to the Controller.

122 OP connected to the Controller.

123 PC disconnected from the Controller.

124 TP disconnected from the Controller.

125 OP disconnected from the Controller.

126 Working mode changed to AUTO.

127 Working mode changed to Program.

128 Working mode changed to Teach.

129 Remote Ethernet connected to the
Controller.

130 Remote Ethernet disconnected from
the Controller.

131 Remote RS232 connected to the
Controller.

132 Remote RS232 disconnected from the
Controller.

LogoutStatus
0:Nomal
1:Abnormal
(Timeout)

SPEL+ Error Messages

494 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Warnings

No. Message Remedy Note 1 Note 2

501 Trace history is active.
Effects system performance if trace
history is active.

502 Memory has been initialized.

When this error occurs, the value of the
Global Preserve variable will be
initialized.
Replace the CPU board battery.
Replace the CPU board.

505 Reboot the controller.

511

Battery voltage of the CPU board
backup is lower than the allowed
voltage. Replace the CPU board
battery.

Replace the CPU board battery
immediately. Keep the power to the
controller ON as far as possible until
you replace the battery.

Current
value

Boundary
value

512
5V input voltage for the CPU board is
lower than the allowed voltage.

If normal voltage is not generated by a
5V power supply alone, replace the
power supply.

Current
value

Boundary
value

513
24 V input voltage for the motor brake,
encoder and fan is lower than the
specified voltage.

If normal voltage is not generated by a
24V power supply alone, replace the
power supply.

Current
value

Boundary
value

514
Internal temperature of the Controller is
higher than the allowed temperature.

Stop the controller as soon as possible
and check whether the ambient
temperature of the controller is not
high.
Check whether the filter is not clogged
up.

Current
value

Boundary
value

515
Rotating speed of the controller fan is
below the allowed speed. (FAN1)

Check whether the filter is not clogged
up. If the warning is not cleared after
the controller is rebooted, replace the
fan.

Current
value

Boundary
value

516
Rotating speed of the controller fan is
below the allowed speed. (FAN2)

Check whether the filter is not clogged
up. If the warning is not cleared after
the controller is rebooted, replace the
fan.

Current
value

Boundary
value

517
Internal temperature of the Controller is
higher than the allowed temperature.

597
The PTP motion to avoid the singularity
point has completed.

PTP motion for the singularity
avoidance was completed.
Clicking the same jog button will
operate the robot in the normal jog
motion.

598
Robot stopped due to a collision
detection. Move in a different direction
to avoid the collision.

599
Jogging attempted near singularity
point.

700
Motor driver type does not match the
current robot model. Check the robot
model. Replace the motor driver.

Check the robot model.

736
Encoder has been reset. Reboot the
controller.

Reboot the controller.

737
Low voltage from the encoder battery.
Replace the battery with the controller
ON.

Replace the battery for the robot with
the controller ON.

752 Servo alarm D.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 495

Controller Main

No. Message Remedy Note 1 Note 2

1001
Operation Failure.
Command parameter is invalid.

1002
Requested data cannot be
accessed. The data is not set up or
the range is invalid.

Check whether the target I/O,
variables, and tasks exist.

1003 The password is invalid Enter the correct password.

1004
Cannot execute with unsupported
version.

Use the correct version file.

1005
Cannot execute with invalid serial
number.

Use the backup data for the same
controller to restore the controller
configuration.

1006
Cannot execute with invalid Robot
model.

Use the backup data for the same
controller to restore the controller
configuration.

1007
Cannot execute with invalid
Controller.

Controller connected with PC is not
supported.
Connect with a regular controller.

1008
Initialization failure. Failed to
initialize TP.

1009
OP is not supported by the
connected controller.

1020 Cannot execute in recovery mode. Boot the controller as normal.

1021
Cannot execute due to controller
initialization failure.

Restore the controller configuration.

1022
Cannot execute without the project
being open.

Open a project.

1023
Cannot execute while the project is
open.

Rebuild the project.

1024 Cannot activate from remote. Enable the remote input.

1025
Execution in Teach mode is
prohibited.

Change to the AUTO mode.

1026
Cannot execute in Teach mode
except from TP.

Change to the AUTO mode.

1027 Cannot execute in Auto mode. Change to the Program mode.

1028
Cannot execute in Auto mode
except from the main console.

Change to the Program mode.

1029 Cannot execute from OP. Enable the OP input.

1030
Does not allow Operation mode to
be changed.

Change to the Auto mode with a
console in the Program mode.

1031
Cannot execute while tasks are
executing.

Stop the task and then execute.

1032
Cannot execute while the
maximum number of tasks are
executing.

Stop the task and then execute.

1033
Cannot execute during
asynchronous motion command.

Execute after the motion ends.

1034
Asynchronous command stopped
during operation.

The asynchronous command already
stopped when the controller received
a stop command.

1035
Cannot execute in Remote enable
except from the Remote.

The command cannot be executed
by the console except the remote I/O
when AutoMode output of the remote
I/O is ON.

SPEL+ Error Messages

496 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

1036
Cannot execute in OP enable
except from the OP.

1037
Cannot execute in Remote
Ethernet enable except from the
Remote Ethernet.

The command cannot be executed
by the console except the remote
Ethernet when Auto flag of the
remote Ethernet is ON.

1040
Cannot execute in Remote
RS232C enable except from the
Remote RS232C.

1041
Cannot execute during Emergency
Stop status.

Cancel the Emergency Stop status.

1042
Cannot execute while the
safeguard is open.

Close the safeguard.

1043
Cannot execute during error
condition.

Cancel the error condition.

1044
Cannot execute when the remote
pause input is ON.

Change the remote pause input to
OFF.

1045
Input waiting condition is the only
available condition to input.

The controller received an input
while it was not in the Input waiting
condition.

1046 Cannot execute during file transfer. Execute after the file transmission.

1047
Cannot cancel the command
executed from other devices.

Cancel the motion command from
the device the command was issued
from.

1048
Cannot execute after after low
voltage was detected.

Reboot the controller.

1049
Other devices are in program
mode.

1050 Password is too long.
Enter the password that is less than
16 characters.

1051 Export Controller Status failed.

1. Retry using the same USB
memory.

2. Retry using another USB
memory.

3. Retry after rebooting the
controller.

1052 Export Controller Status busy.
Execute the command after
completing the controller status
backup.

1100 File failure. Cannot access the file.
1. Reboot the controller.
2. Reinstall the firmware.
3. Replace the CF.

1102
File failure. Read and write failure
of the registry

1. Reboot the controller..
2. Replace the CF.

1103 File is not found. Check whether the file exists.
1104 Project file was not found. Rebuild the project.
1105 Object file was not found. Rebuild the project.
1106 Point files were not found. Rebuild the project.

1107
The program is using a feature that
is not supported by the current
controller firmware version.

1108
One or more source files are
updated. Please build the project.

Rebuild the project.

1109 Not enough storage capacity.
Increase free space of the USB
memory.

1110 File is not found.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 497

No. Message Remedy Note 1 Note 2

1120 File failure. Setting file is corrupt. Restore the controller configuration.

1121 File failure. Project file is corrupt. Rebuild the project.

1122 File failure. Point file is corrupt. Rebuild the project.

1123 File failure. I/O label file is corrupt. Rebuild the project.

1124
File failure.
User error file is corrupt.

Rebuild the project.

1126
File failure.
Software option infomation is
corrupt.

1. Reboot the controller.
2. Reinstall the firmware.
3. Reconfigure the option.

1127
File failure.
Vision file is corrupt.

Rebuild the project.

1128
File failure.
Backup information file is corrupt.

The specified backup information
cannot be restored.
Acquire the backup information
again, and then restore the file.

1130
Error message failure. No item is
found in the error history.

No error history exists.
Reboot the controller.

1131 Cannot access the USB memory.

Insert the USB memory properly.
When this error still occurs after the
USB memory is inserted properly,
the memory may be unrecognizable
to controller. Insert another memory
to check the operation.

1132 File failure. Failed to copy the file.

1133 File failure. Failed to delete the file.

1135
File failure.
The name of Playback is invalid.

1140
File failure.
Failed to open the object file.

Rebuild the project.

1141
File failure.
Failed to open the project file.

Rebuild the project.

1142
File failure.
Failed to read the project file.

Rebuild the project.

1143
File failure.
Failed to open the condition save
file.

1. Retry using the same USB
memory.

2. Retry using another USB
memory.

3. Retry after rebooting the
controller.

1144
File failure.
Failed to write the condition save
file.

1. Retry using the same USB
memory.

2. Retry using another USB
memory.

3. Retry after rebooting the
controller.

1150 File failure. Error history is invalid.
1. Reboot the controller.
2. Replace the CF.

1151
File failure.
Failed to map the error history.

1. Reboot the controller.
2. Replace the CF.

1152
File failure.
Failed to open the error history file.

1. Reboot the controller.
2. Replace the CF.

1153
File failure.
Failed to write the error history file.

1. Reboot the controller.
2. Replace the CF.

1155
File failure. Failed to open the
settings file.

Restore the controller configuration.

SPEL+ Error Messages

498 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

1156
File failure. Failed to save the
settings file.

Restore the controller configuration.

1157
File failure. Failed to read the
settings file.

Restore the controller configuration.

1158
File failure. Failed to write the
settings file.

Restore the controller configuration.

1160
MCD failure. Failed to open the
MCD file.

Restore the controller configuration.

1161
MCD failure. Failed to read the
MCD file.

Restore the controller configuration.

1163
MCD failure. Failed to save the
MCD file.

Restore the controller configuration.

1165
MPD failure. Failed to open the
MPD file.

1166
MPD failure. Failed to read the
MPD file.

1168
MPD failure. Failed to save the
MPD file.

1170
MPL failure. Failed to open the
MPL file.

1. Reboot the controller.
2. Reinstall the firmware.

1181
PRM failure. Failed to replace the
PRM file.

1. Reboot the controller.
2. Reconfigure the robot.

1185
File failure. Failed to open the
backup information file.

1186
File failure. Failed to read the
backup information file.

1187
File failure. Failed to write the
backup information file.

1188
File failure. Failed to save the
backup information file.

1189
The backup data was created by
an old version.

Cannot restore the controller
configuration in the specified
procedure for using old backup data.
Check the backup data.

1190
The backup data was created by a
newer version.

1191
There is no project in the backup
data.

1200
Compile failure.
Check the compile message.

This error occurs during compilation
from TP. Correct where the error
occurred.

1201
Link failure.
Check the link message.

This error occurs during compilation
from TP. Correct where the error
occurred.

1500 Communication error.

1501
Command did not complete in
time.

Execute the command again after a
while. Check the connection
between the PC and controller.

1502
Communication disconnection
between PC and Controller.
Re-establish communication.

Check the connection between the
PC and controller.

1503
Disconnection while executing a
task.

Check the connection between the
console device and controller.

1510 Out of IP Address range.
Check the IP address setting of the
controller.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 499

No. Message Remedy Note 1 Note 2

1521
Vision communication.
Failed to initialize Ethernet.

Reboot the controller.

1522
Vision communication.
Failed to terminate Ethernet.

1523
Vision communication.
Failed to create the socket handle.

Reboot the controller.

1524
Vision communication.
Failed to connect.

Check the connection between the
camera and controller.

1526
Vision communication.
Failed to send to the server.

Check the connection between the
camera and controller.

1527
Vision communication.
Failed to read from the server.

Check the connection between the
camera and controller.

1528
Vision communication.
Failed to set option.

1529
Vision communication.
Ethernet has not been initialized
yet.

Reboot the controller.

1530
Vision communication.
Connection is not completed.

Check the connection of the camera
and controller.

1531
Vision communication.
All sockets are used.

1532
Vision communication.
Send timeout.

Check the connection between the
camera and controller.

1533
Vision communication.
Read timeout.

Check the connection between the
camera and controller.

1534
Vision communication.
Communication error.

Check the connection between the
camera and controller.

1550
Communication failure.
Ethernet initialization error.

Reboot the controller. Check the
connection of the Ethernet cable.

1551
Communication failure.
USB initialization error.

Reboot the controller. Check the
connection of the USB cable.

1552
Communication failure. Controller
internal communication error.

Reboot the controller.

1553
Communication failure. Invalid data
is detected.

1555 Ethernet transmission error.
Check the connection between the
PC and controller.

1556 Ethernet reception error.

Check the connection between the
PC and controller.
If the router is used between the PC
and controller, confirm that the
DHCP function is disabled.

1557 USB transmission error.
Check the connection between the
PC and controller.

1558 USB reception error.
Check the connection between the
PC and controller.

1559
Communication failure. Failed to
allocate memory.

1580 Parser communication error.
1. Reboot the controller.
2. Upgrade the firmware.

1581
Parser communication failure.
Timeout error occurred during
communication with parser.

1. Reboot the controller.
2. Reinstall the firmware.

1582
Parser communication failure.
Parser transmission error.

Reboot the controller.
Rebuild the project.

SPEL+ Error Messages

500 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

1583
Parser communication failure.
Parser initialization error.

Reboot the controller.

1584
Parser communication failure.
Connection error.

Reboot the controller.

1585
Parser communication failure.
Parameter is invalid.

Reboot the controller.
Rebuild the project.

1586
Parser communication failure.
Busy.

1587
Parser communication failure.
Invalid data is detected.

Upgrade the firmware.

1901
Unsupported. Unsupported
command was attempted.

Update the firmware.

1902
Unsupported. Unsupported
parameter was specified.

1903 System error.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 501

Operator Panel

No. Message Remedy Note 1 Note 2

1600
Initialization failure. Failed to
initialize OP.

1603
Timeout error occurred during
communication with OP.

Check whether the cable is firmly
connected.
Replace the cable.

1604
Parity error occurred during
communication with OP.

Check whether the cable is firmly
connected.
Replace the cable.

1605
Framing error occurred during
communication with OP.

Check whether the cable is firmly
connected.
Replace the cable.

1606
Overrun error occurred during
communication with OP.

Check whether the cable is firmly
connected.
Replace the cable.

1607
Checksum error occurred during
communication with OP.

Check whether the cable is firmly
connected.
Replace the cable.

1608
Retry error occurred during
communication with OP.

Check whether the cable is firmly
connected.
Replace the cable.

1609
OP cannot be connected. Upgrade the controller software.

Upgrade the OP firmware.

Teach Pendant

No. Message Remedy Note 1 Note 2

1700
Initialization failure. Failed to
initialize TP.

1701
Initialization failure. Failed to
initialize TP.

1702
Initialization failure. Failed to
initialize TP.

1703
File failure. Failed to read the
screen data file.

1704 Failed to read the setting file.

1706 Failed to open the TP port.

1708 Failed to read the key table for TP.

1709 Failed to change the language.

1710 Failed to make the screen.

SPEL+ Error Messages

502 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

PC

No. Message Remedy Note 1 Note 2

1800
The controller is already connected
to a PC.

Only one PC can be connected to
the controller.

1802
The command was attempted
without being connected to a
controller.

1803
Failed to read or write the file on
the PC.

1804
Initialization failure. Failed to
allocate memory on the PC.

1805
Connection failure. Check the
controller startup and connection of
the communication cable.

1806
Timeout during connection via
Ethernet.

1807
Timeout during connection via
USB.

1808 USB driver is not installed.
Failed to install EPSON RC+ 5.0.
Install EPSON RC+ 5.0 again.

1851
Unsupported. Unsupported
command was attempted.

1852 System error. Uncommon error.
1. Reboot the EPSON RC+5.0.
2. Reboot the PC.
3. Reinstall the EPSON RC+ 5.0.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 503

Simulator
No. Message Remedy Note 1 Note 2

1861
Initialization failure. Failed to
initialize SimulatorMNG.

1. Reboot the EPSON RC+ 5.0.
2. Reboot the PC.
3. Reinstall the EPSON RC+ 5.0.

1862
Initialization failure. Failed to
initialize WBProxy.

1. Reboot the EPSON RC+ 5.0.
2. Reboot the PC.
3. Reinstall the EPSON RC+ 5.0.

1863 The parameter is invalid.

1864
Initialization failure. Virtual
controller does not exist.

Installation of EPSON RC+ 5.0 failed.
Reinstall EPSON RC+ 5.0.

1865
Initialization failure. Failed to start
virtual controller.

1. Retry after a while.
2. Reboot the PC.

1867
Cannot execute because it is not
dry run mode.

Dry run mode is invalid.
Enable the dry run.

1868
Initialization failure. Directory
cannot be found.

Installation of the EPSON RC+ 5.0
failed. Reinstall the software.

1870
Pallet failure. Number of point is
beyond the maximum value.

1871
Connection failure. Virtual
controller version is old.

1872
Connection failure. Files for
simulator that used real controller
cannot be found.

1873
Connection failure. Files for
simulator that used virtual
controller cannot be found.

Register the virtual controller again in
the connection setting.

1874 Virtual Controller cannot be added.
Installation of EPSON RC+ 5.0 failed.
Reinstall the software.

1875
Simulator Object failure. Cannot
register data of the simulator
object.

1876
Simulator Object failure. Cannot
register data of the simulator
object.

1877
Simulator Object failure. Cannot
remove data of the simulator
object.

1878
Simulator Object failure. Cannot
update data of the simulator
object.

1879
Other virtual controllers are
starting.

Start another EPSON RC+5.0 and
check if it connects with the virtual
controller.

1880
Cannot execute during controller
reset.

SPEL+ Error Messages

504 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

7750 Initialization failure. Reboot RC+.
7751 Failed to save the objects. Reboot RC+.
7752 Failed to load the objects. Reboot RC+.
7753 Failed to mapping of memory. Reboot RC+.

7754 The virtual controller already exists.
Name of the virtual controller may be
duplicated. Check the virtual
controller name.

7755
Failed to create the virtual controller
connection information.

Reboot RC+.

7756
The copy source of the virtual
controller does not exist.

Check the virtual controller name.

7757
The copy destination of the virtual
controller already exists.

Name of the virtual controller may be
duplicated. Check the virtual
controller name.

7758
Failed to copy the virtual controller
connection information.

Reboot RC+.

7759
Failed to delete the virtual controller
connection information.

Reboot RC+.

7760
Failed to delete the controller
connection information.

Reboot RC+.

7761
Failed to rename the controller
connection information.

Check the virtual controller name.

7762
The rename source of the virtual
controller does not exist.

Check the virtual controller name.

7763
The rename destination of the
virtual controller already exists.

Check the virtual controller name.

7764 Invalid Robot number. Reboot RC+.

7765
Failed to read the Robot definition
file.

Check whether the definition file
exists.

7766 Failed to copy the layout objects. Reboot RC+
7767 Failed to cut the layout objects. Reboot RC+
7768 Failed to paste the layout objects. Reboot RC+
7769 Failed to remove the Robot. Reboot RC+

7770
Cannot execute with unsupported
version.

Update RC+ to the latest version

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 505

Interpreter

No. Message Remedy Note 1 Note 2

2000
Unsupported. Unsupported
command was attempted.

Rebuild the project.

2001
Unsupported. Unsupported motion
command was attempted.

Rebuild the project.

2002
Unsupported. Unsupported
conveyer command was
attempted.

Rebuild the project.

2003
Unsupported. Unsupported
Function argument was specified.

Rebuild the project.

2004
Unsupported. Unsupported
Function return value was
specified.

Rebuild the project.

2005
Unsupported. Unsupported
condition was specified.

Rebuild the project.

2006
Unsupported. Unsupported I/O
command was specified.

Rebuild the project.

2007
Unsupported condition was
specified.

Cannot jog in the CP motion
(default).

2008
Unsupported.
Unknown error number.

Clicking the same jog button will
operate the robot in the PTP motion.

2009
Unsupported.
Invalid Task number.

Cannot jog in the CP motion
(default).

2010
Object file error. Build the project.
Out of internal code range.

Rebuild the project.

2011
Object file error. Build the project.
Function argument error.

Rebuild the project.

2012
Object file error. Build the project.
Command argument error.

Rebuild the project.

2013
Object file error. Build the project.
Cannot process the code.

Rebuild the project.

2014
Object file error. Build the project.
Cannot process the variable type
code.

Rebuild the project.

2015
Object file error. Build the project.
Cannot process the string type
code.

Rebuild the project.

2016
Object file error. Build the project.
Cannot process the variable
category code.

Rebuild the project.

2017
Object file error. Build the project.
Cannot process because of
improper code.

Rebuild the project.

2018
Object file error. Build the project.
Failed to calculate the variable
size.

Rebuild the project.

2019
Object file error.
Cannot process the variable wait.
Build the project.

Rebuild the project.

2020
Stack table number exceeded.
Function call or local variable is out
of range.

Check whether no function is called
infinitely. Reduce the Call function
depth.

SPEL+ Error Messages

506 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

2021
Stack area size exceeded. Stack
error. Function call or local variable
is out of range.

If using many local variables,
especially String type, replace them
to global variables.

2022
Stack failure. Required data not
found on the stack.

Rebuild the project.

2023
Stack failure. Unexpected tag
found on the stack.

Rebuild the project.

2030
System failure. Drive unit quantity
is beyond the maximum count.

Restore the controller configuration.

2031
System failure. Robot number is
beyond the maximum count.

Restore the controller configuration.

2032
System failure. Task number
compliance error.

Rebuild the project.

2033 System failure. Too many errors.
Remedy the errors occurring
frequently.

2040
Thread failure.
Failed to create the thread.

Reboot the controller.

2041
Thread failure.
Thread creation timeout.

Reboot the controller.

2042
Thread failure.
Thread termination timeout.

Reboot the controller.

2043
Thread failure.
Thread termination timeout.

Reboot the controller.

2044
Thread failure.
Daemon process timeout.

Reboot the controller.

2045
Thread failure.
Task continuance wait timeout.

Reboot the controller.

2046
Thread failure.
Task stop wait timeout.

Reboot the controller.

2047
Thread failure.
Task startup wait timeout.

Reboot the controller.

2050
Object file operation failure.
Object file size is beyond the
allowable size.

Rebuild the project.

2051
Object file operation failure.
Cannot delete the object file during
execution.

Reboot the controller.

2052
Object file operation failure.
Cannot allocate the memory for the
object file.

Reboot the controller.

2053
Object file update.
Updating the object file.

Perform the same processing after a
while. Rebuild the project.

2054
Object file operation failure.
Synchronize the project.
Function ID failure.

Synchronize the files of the project.
Rebuild the project.

2055
Object file operation failure.
Synchronize the project.
Local variable ID failure.

Synchronize the files of the project.
Rebuild the project.

2056
Object file operation failure.
Synchronize the project.
variable ID failure.

Synchronize the files of the project.
Rebuild the project.

2057
Object file operation failure.
Synchronize the project. Global
Preserve variable ID failure.

Synchronize the files of the project.
Rebuild the project.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 507

No. Message Remedy Note 1 Note 2

2058
Object file operation failure. Failed
to calculate the variable size.

Synchronize the files of the project.
Rebuild the project.

2059
Exceed the global variable area.
Cannot assign the Global variable
area.

Reduce the number of Global
variables to be used.

2070
SRAM failure.
SRAM is not mapped.

Replace the CPU board.

2071
SRAM failure. Cannot delete when
Global Preserve variable is in use.

Perform the same processing after a
while. Rebuild the project.

2072
Exceed the backup variable area.
Cannot assign the Global Preserve
variable area.

Reduce the number of Global
Preserve variables to be used.

Maximum size
The size you
attempted to
use

2073
SRAM failure.
Failed to clear the Global Preserve
variable area.

Rebuild the project.

2074
SRAM failure.
to clean up the Global Preserve
variable save area.

Reboot the controller.

2100
Initialization failure.
Failed to open the initialization file.

Restore the controller configuration.

2101
Initialization failure.
Duplicated initialization.

Reboot the controller.

2102
Initialization failure.
Failed to initialize MNG.

Reboot the controller.

2103
Initialization failure.
Failed to create an event.

Reboot the controller.

2104
Initialization failure.
Failed to setup a priority.

Reboot the controller.

2105
Initialization failure.
Failed to setup the stack size.

Reboot the controller.

2106
Initialization failure.
Failed to setup an interrupt
process.

Reboot the controller.

2107
Initialization failure.
Failed to start an interrupt process.

Reboot the controller.

2108
Initialization failure.
Failed to stop an interrupt process.

Reboot the controller.

2109
Initialization failure.
Failed to terminate MNG.

Reboot the controller.

2110
Initialization failure.
Failed to allocate memory.

Reboot the controller.

2111
Initialization failure.
Failed to initialize motion.

Restore the controller configuration.

2112
Initialization failure.
Failed to terminate motion.

Reboot the controller.

2113
Initialization failure.
Failed to map SRAM.

Replace the CPU board.

2114
Initialization failure.
Failed to register SRAM.

Replace the CPU board.

2115
Initialization failure. Fieldbus board
is beyond the maximum count.

Check the number of fieldbus boards.

SPEL+ Error Messages

508 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

2116
Initialization failure.
Failed to initialize fieldbus.

Reboot the controller.
Check the fieldbus board.
Replace the fieldbus board.

2117
Initialization failure.
Failed to terminate fieldbus.

Reboot the controller.

2118
Initialization failure.
Failed to open motion.

Restore the controller configuration.

2119
Initialization failure.
Failed to initialize conveyor
tracking.

Make sure the settings of conveyor
and encoder are correct.

2120
Initialization failure. Failed to
allocate the system area.

Reboot the controller.

2121
Initialization failure. Failed to
allocate the object file area.

Reboot the controller.

2122
Initialization failure. Failed to
allocate the robot area.

Reboot the controller.

2123
Initialization failure.
Failed to create event.

Reboot the controller.

2124
Initialization failure.
Failed to create the simulator data
file.

2130
MCD failure.
Failed to open the MCD file.

Restore the controller configuration.

2131
MCD failure.
Failed to map the MCD file.

Restore the controller configuration.

2132
PRM failure.
PRM file cannot be found.

Restore the controller configuration.

2133
PRM failure.
Failed to map the PRM file.

Restore the controller configuration.

2134
PRM failure.
PRM file contents error.

Restore the controller configuration.

2135
PRM failure.
Failed to convert the PRM file.

Reboot the controller.

2136
PRM failure.
Failed to convert the PRM file.

Reboot the controller.

2137
PRM failure.
 Failed to convert the PRM file.

Reboot the controller.

2150
Operation failure.
Task number cannot be found.

Reboot the Controller.

2151
Operation failure.
Executing the task.

Reboot the Controller.

2152
Operation failure.
Object code size failure.

Reboot the Controller.

2153
Operation failure.
Jog parameter failure.

Reboot the Controller.

2154 Operation failure. Executing jog. Reboot the Controller.

2155
Operation failure. Cannot execute
the jog function.

Reboot the Controller.

2156
Operation failure. Jog data is not
configured.

Reboot the Controller.

2157
Operation failure. Failed to change
the jog parameter.

Reboot the Controller.

2158
Operation failure. Failed to allocate
the area for the break point.

Reboot the Controller.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 509

No. Message Remedy Note 1 Note 2

2159
Operation failure.
Break point number is beyond the
allowable setup count.

Reduce the break points.

2160
Operation failure.
Failed to allocate the function ID. Reboot the Controller.

2161
Operation failure.
Failed to allocate the local variable
address.

Reboot the Controller.

2162
Operation failure.
Not enough buffer to store the local
variable.

Review the size of the Local variable.

2163
Operation failure.
Value change is available only
when the task is halted.

Halt the task by the break point.

2164
Operation failure.
Failed to allocate the global
variable address.

Review the size of the global
variable.

2165
Operation failure.
Not enough buffer to store the
global variable.

Review the size of the global
variable.

2166
Operation failure.
Failed to obtain the Global
Preserve variable address.

Review the size of the global
preserve variable.

2167
Operation failure.
Not enough buffer to store the
Global Preserve variable.

Review the size of the global
preserve variable.

2168
Operation failure.
SRAM is not mapped.

Reboot the Controller.

2169

Operation failure.
Cannot clear the Global Preserve
variable when loading the object
file.

Reboot the Controller.

2170
Operation failure.
Not enough buffer to store the
string.

Check the size of the string variable.

2171
Operation failure.
Cannot start the task after low
voltage was detected.

Check the controller power.
Reboot the Controller.

2172
Operation failure.
Duplicated remote I/O
configuration.

Reboot the Controller.

2173
Remote setup error.
Cannot assign non-existing input
number to remote function.

Check the I/O input number.

2174
Remote setup error.
Cannot assign non-existing output
number to remote function.

Check the I/O output number.

2175
Operation failure.
Remote function is not configured. Reboot the Controller.

2176
Operation failure.
Event wait error.

Reboot the Controller.

2177
Operation failure.
System backup failed.

Reboot the Controller.
Install the Controller firmware.

2178
Operation failure.
System restore failed.

Reboot the Controller.
Install the Controller firmware.

SPEL+ Error Messages

510 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

2179
Remote setup error.
Cannot assign same input number
to some remote functions.

Check the remote setting.

2180
Remote setup error.
Cannot assign same output
number to some remote functions.

Check the remote setting.

2190
Cannot calculate because it was
queue data.

Review the program.

2192
Cannot execute AbortMotion
because robot task is already
finished.

Task is completed.
Review the program.

2193
Cannot execute Recover without
motion because AbortMotion was
not executed.

Execute AbortMotion in advance to
execute Recover WithoutMove.

2194 Conveyor setting error.
Make sure the settings of conveyor
and encoder are correct.

2195 Conveyor setting error.
Make sure the settings of conveyor
and encoder are correct.

2196 Conveyor number is out of range.
Make sure the settings of conveyor
and encoder are correct.

2200

Robot in use.
Cannot execute the motion
command when other tasks are
using the robot.

The motion command for the robot
cannot be simultaneously executed
from more than one task.
Review the program.

2201 Robot does not exist.
Check whether the robot setting is
performed properly. Restore the
controller configuration.

2202
Motion control module status
failure. Unknown error was
returned.

Rebuild the project.

2203 Cannot clear local number ' 0 '.
The Local number 0 cannot be
cleared. Review the program.

2204 Cannot clear an arm while in use.
The Arm cannot be cleared while it is
in use. Check whether the Arm is not
used.

The Arm
number you
attempted to
clear

2205 Cannot clear arm number ' 0 '.
The Arm number 0 cannot be
cleared. Review the program.

2206 Cannot clear a tool while in use.
The Tool cannot be cleared while it is
in use. Check whether the Tool is
not used.

The Tool
number you
attempted to
clear

2207 Cannot clear tool number ' 0 '.
The Tool number 0 cannot be
cleared. Review the program.

2208 Cannot clear ECP ' 0 '.
The ECP number 0 cannot be
cleared. Review the program.

2209 Cannot clear an ECP while in use.
The ECP cannot be cleared while it is
in use. Check whether the ECP is
not used.

The ECP
number you
attempted to
clear

2210
Cannot specify ' 0 ' as the local
number.

The command processing the Local
cannot specify the Local number 0.
Review the program.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 511

No. Message Remedy Note 1 Note 2

2216 Box number is out of range.
Available Box numbers are from 1 to
15. Review the program.

2217 Box number is not defined.
Specified Box is not defined.
Review the Box number.

2218 Plane number is out of range.
Available Box numbers are from 1 to
15. Review the program.

2219 Plane number is not defined.
Specified Plane is not defined.
Review the Plane number.

2220
PRM failure. No PRM file data is
found.

Reboot the controller. Restore the
controller configuration.

2221
PRM failure. Failed to flash the
PRM file.

Reboot the controller. Restore the
controller configuration.

2222 Local number is not defined.
Check the Local setting. Review the
program.

The specified
Local number

2223 Local number is out of range.
Available Local number is from 1 to
15. Review the program.

The specified
Local number

2224
Unsupported. MCOFS is not
defined

2225 CalPls is not defined. Check the CalPls setting.

2226 Arm number is out of range.

Available Arm number is from 0 to 3.
Depending on commands, the Arm
number 0 is not available. Review
the program.

The specified
Arm number

2227 Arm number is not defined.
Check the Arm setting. Review the
program.

The specified
Arm number

2228
Pulse for the home position is not
defined.

Check the HomeSet setting.

2229 Tool number is out of range.

Available Tool number is from 0 to 3.
Depending on commands, the Tool
number 0 is not available. Review
the program.

The specified
Tool number

2230 Tool number is not defined.
Check the Tool setting. Review the
program.

The specified
Tool number

2231 ECP number is out of range.

Available Tool number is from 0 to
15. Depending on commands, the
Tool number 0 is not available.
Review the program.

The specified
ECP number

2232 ECP number is not defined.
Check the ECP setting. Review the
program.

The specified
ECP number

2233
Axis to reset the encoder was not
specified.

Be sure to specify the axis for
encoder reset.

2234
Cannot reset the encoder with
motor in the on state.

Turn the motor power OFF before
reset.

2235 XYLIM is not defined.
Check the XYLim setting. Review
the program.

2236
PRM failure. Failed to set up the
PRM file contents to the motion
control status module.

Reboot the controller. Restore the
controller configuration.

2240
Array subscript is out of user
defined range. Cannot access or
update beyond array bounds.

Check the array subscript. Review
the program.

The
dimensions
exceeding the
definition

The specified
subscript

2241
Dimensions of array do not match
the declaration.

Check the array's dimensions.
Review the program.

SPEL+ Error Messages

512 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

2242 Zero '0' was used as a divisor. Review the program.

2243
Variable overflow.
Specified variable was beyond the
maximum allowed value.

Check the variable type and
calculation result. Review the
program.

2244
Variable underflow.
Specified variable was below the
minimum allowed value.

Check the variable type and
calculation result. Review the
program.

2245
Cannot execute this command with
a floating point number.

This command cannot be executed
for Real or Double type. Review the
program.

2246
Cannot calculate the specified
value using the Tan function.

Check the specified value. Review
the program.

The specified
value

2247
Specified array subscript is less
than ' 0 '.

Check the specified value. Review
the program.

The specified
value

2248
Array failure. Redim can only be
executed for an array variable.

You attempted to redimension the
variable that is not array. Rebuild the
project.

2249
Array failure. Cannot specify
Preserve for other than a single
dimension array.

Other than a single dimension array
was specified as Preserve for Redim.
Rebuild the project.

2250
Array failure. Failed to calculate the
size of the variable area.

Rebuild the project.

2251
Cannot allocate enough memory
for Redim statement.

Reduce the number of subscripts to
be specified for Redim. Perform
Redim modestly.

2252
Cannot allocate enough memory
for ByRef.

Reduce the number of array's
subscripts to be seen by ByRef.

2253
Cannot compare characters with
values.

Check whether the string type and
the numeric data type are not
compared. Review the program.

2254
Specified data is beyond the array
bounds. Cannot refer or update
beyond the array bounds.

Check the number of array's
subscripts and data. Review the
program.

The number of
array
subscripts

The number
of data to be
referred or
updated

2255
Variable overflow or underflow.
Specified variable is out of value
range.

The value that exceeds the range of
Double type is specified. Review the
program.

2256
Specified array subscript is beyond
the maximum allowed range.

Reduce the number of subscripts to
be specified. For available
subscripts, see the online help.

2260
Task number is out of the available
range.

For available task number, see the
online help. Review the program.

The specified
task number

2261
Specified task number does not
exist.

Review the program.
The specified
task number

2262
Robot number is out of the
available range.

The available Robot number is 1.
Review the program.

The specified
robot number

2263

Output number is out of the
available range. The Port No. or
the Device No. is out of the
available range.

For available output number, see the
online help. Review the program.

The specified
output number

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 513

No. Message Remedy Note 1 Note 2

2264

Command argument is out of the
available range. Check the
validation. Added data 1: Passed
value. Added data 2: argument
order.

For available range of argument, see
the online help. Review the program.

The specified
value

What number
argument?

2265
Joint number is out of the available
range.

Available Joint number is from 1 to 6.
Review the program.

The specified
joint number

2266 Wait time is out of available range.
Available wait time is from 0 to
2147483. Review the program.

The specified
wait time

2267
Timer number is out of available
range.

Available timer number is from 0 to
15. Review the program.

The specified
timer number

2268
Trap number is out of available
range.

Available trap number is from 1 to 4.
Review the program.

The specified
trap number

2269
Language ID is out of available
range.

For available language ID, see the
online help. Review the program.

The specified
language ID

2270
Specified D parameter value at the
parallel process is out of available
range.

Available D parameter value is from
0 to 100. Review the program.

The specified
D parameter
value

2271
Arch number is out of available
range.

Available arch number is from 0 to 7.
Review the program.

The specified
arch number

2272
Device No. is out of available
range.

The specified number representing a
control device or display device is out
of available range. For available
device number, see the online help.
Review the program.

The specified
device
number

2273
Output data is out of available
range.

Available output data value is from 0
to 255. Review the program.

Output data
What number
byte data is
out of range?

2274
Asin argument is out of available
range. Range is from -1 to 1.

Review the program.

2275
Acos argument is out of available
range. Range is from -1 to 1.

Review the program.

2276
Sqr argument is out of available
range.

Review the program.

2277
Randomize argument is out of
available range.

Review the program.

2278
Sin, Cos, Tan argument is out of
available range.

Review the program.

2280

Timeout period set by the TMOut
statement expired before the wait
condition was completed in the
WAIT statement.

Investigate the cause of timeout.
Check whether the set timeout period
is proper.

Timeout
period

2281
Timeout period set by TMOut
statement in WaitSig statement or
SyncLock statement expired.

Investigate the cause of timeout.
Check whether the set timeout period
is proper.

Signal number
Timeout
period

2282
Timeout period set by TMOut
statement in WaitNet statement
expired.

Investigate the cause of timeout.
Check whether the set timeout period
is proper.

Port number
Timeout
period

2283
Timeout.
Timeout at display device setting.

Reboot the controller.

SPEL+ Error Messages

514 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

2290
Cannot execute a motion
command.

Cannot execut the motion command
after using the user function in the
motion command. Review the
program.

2291
Cannot execute the OnErr
command.

Cannot execute OnErr in the motiion
command when using user function
in the motion command. Review the
program.

2292
Cannot execute an I/O command
while the safeguard is open. Need
Forced.

I/O command cannot be executed
while the safeguard is open. Review
the program.

2293
Cannot execute an I/O command
during emergency stop condition.
Need Forced.

I/O command cannot be executed
during emergency stop condition.
Review the program.

2294
Cannot execute an I/O command
when an error has been detected.
Need Forced.

I/O command cannot be executed
while an error occurs. Review the
program.

2295
Cannot execute this command
from a NoEmgAbort Task.

For details on inexecutable
commands, refer to the online help.
Review the program.

2296
One or more source files are
updated. Please build the project.

Rebuild the project.

2297
Cannot execute an I/O command
in TEACH mode without the
Forced parameter.

I/O command cannot be executed in
TEACH mode. Review the program.

2298
Cannot continue execution in Trap
SGClose process.

You cannot execute Cont and
Recover statements with processing
task of Trap SGClose.

2299
Cannot execute this command.
Need the setting.

Enable the [enable the advance
taskcontrol commands] from RC+ to
execute the command.

2300
Robot in use. Cannot execute the
motion command when other task
is using the robot.

The motion command for the robot
cannot be simultaneously executed
from more than one task. Review the
program.

Task number
that is using
the robot

2301
Cannot execute the motion
command when the Enable Switch
is OFF.

Execute the motion command with
the enable switch gripped.

2302
Cannot execute a Call statement in
a Trap Call process.

Another function cannot be called
from the function called by Trap Call.
Review the program.

2303
Cannot execute a Call statement in
a parallel process.

Review the program.

2304
Cannot execute an Xqt statement
in a parallel process.

Review the program.

2305
Cannot execute a Call statement
from the command window.

Execute Call from the program.

2306
Cannot execute an Xqt statement
from the task started by Trap Xqt.

Review the program.

2307
Cannot execute this command
while tasks are executing.

Check whether all tasks are
completed.

2308
Cannot turn on the motor because
of a critical error.

Find the previously occurring error in
the error history and resolve its
cause. Then, reboot the controller.

2309
Cannot execute a motion
command while the safeguard is
open.

Check the safeguard status.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 515

No. Message Remedy Note 1 Note 2

2310
Cannot execute a motion
command while waiting for
continue.

Execute the Continue or Stop and
then execute the motion command.

2311
Cannot execute a motion
command during the continue
process.

Wait until the Continue is complete
and then execute the motion
command.

2312
Cannot execute a task during
emergency stop condition.

Check the emergency stop status.

2313
Cannot continue execution
immediately after opening the
safeguard.

Wait 1.5 seconds after the safeguard
is open, and then execute the
Continue.

2314
Cannot continue execution while
the safeguard is open.

Check the safeguard status.

2315 Duplicate execution continue. Wait until the Continue is completed.

2316
Cannot continue execution after an
error has been detected.

Check the error status.

2317
Cannot execute the task when an
error has been detected.

Reset the error by Reset and then
execute the task.

2318
Cannot execute a motion
command when an error has been
detected.

Execute the motion command after
resetting the error by Reset.

2319
Cannot execute a I/O command
during emergency stop condition. Check the emergency stop status.

2320
Function failure. Argument type
does not match.

Rebuild the project.

2321
Function failure. Return value does
not match to the function.

Rebuild the project.

2322
Function failure.
ByRef type does not match.

Rebuild the project.

2323
Function failure. Failed to process
the ByRef parameter.

Rebuild the project.

2324
Function failure. Dimension of the
ByRef parameter does not match.

Rebuild the project.

2325
Function failure. Cannot use ByRef
in an Xqt statement.

Rebuild the project.

2326
Cannot execute a Dll Call
statement from the command
window.

Execute DII Call from the program.

2327 Failed to execute a Dll Call.
Check the DLL.
Review the program.

2328
Cannot execute the task before
connect with RC+.

You need to connect with RC+ before
executing the task.

2329
Cannot execute a Eval statement
in a Trap Call process.

Check the program.

2330
Trap failure.
Cannot use the argument in Trap
Call or Xqt statement.

Check the program.

2331
Trap failure. Failed to process Trap
Goto statement.

Rebuild the project.

2332
Trap failure. Failed to process Trap
Goto statement.

Rebuild the project.

2333
Trap failure. Trap is already in
process.

Rebuild the project.

SPEL+ Error Messages

516 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

2334
Cannot execute a Eval statement
in a Trap Finsh and Trap Abort
process.

Check the program.

2335
Cannot continue execution and
Reset Error in TEACH mode.

Check the program.

2336
Cannot use Here statement with a
parallel process.

Go Here :Z(0) ! D10; MemOn(1) !
is not executable.
Change the program to:
P999 = Here
Go P999 Here :Z(0) ! D10;
MemOn(1) !

2337
Cannot execute except from the
event handler function of GUI
Builder

Review the program.

2340
Value allocated in InBCD function
is an invalid BCD value.

Review the program. Tens digit Units digit

2341
Specified value in the OpBCD
statement is an invalid BCD value.

Review the program.
The specified
value

2342
Cannot change the status for
output bit configured as remote
output.

Check the remote I/O setting. I/O number
1: bit, 2: byte,
3: word

2343

Output time for asynchronous
output commanded by On or Off
statement is out of the available
range.

Review the program.
The specified
time

2344
I/O input/output bit number. is out
of available range or the board is
not installed.

Review the program.
Check whether the expansion I/O
board and Fieldbus I/O board are
correctly detected.

Bit number

2345
I/O input/output byte number is out
of available range or the board is
not installed.

Review the program.
Check whether the expansion I/O
board and Fieldbus I/O board are
correctly detected.

Byte number

2346
I/O input/output word No. is out of
available range or the board is not
installed.

Review the program.
Check whether the expansion I/O
board and Fieldbus I/O board are
correctly detected.

Word number

2347
Memory I/O bit number is out of
available range.

Review the program. Bit number

2348
Memory I/O byte number is out of
available range.

Review the program. Byte number

2349
Memory I/O word number is out of
available range.

Review the program. Word number

2350
Command allowed only when
virtual I/O mode is active.

The command can be executed only
for virtual I/O mode.

2351
Cannot change the status for CC-
Link system area.

2352
Remote setup error. Cannot
assign CC-Link system area to
remote function.

2360
File failure. Failed to open the
configuration file.

Restore the controller configuration.

2361
File failure. Failed to close the
configuration file.

Restore the controller configuration.

2362
File failure. Failed to open the key
of the configuration file.

Restore the controller configuration.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 517

No. Message Remedy Note 1 Note 2

2363
File failure. Failed to obtain the
string from the configuration file.

Restore the controller configuration.

2364
File failure. Failed to write in the
configuration file.

Restore the controller configuration.

2365
File failure. Failed to update the
configuration file.

Restore the controller configuration.

2370
The string combination exceeds
the maximum string length.

The maximum string length is 255.
Review the program.

Combined
string length

2371 String length is out of range.
The maximum string length is 255.
Review the program.

The specified
length

2372
Invalid character is specified after
the ampersand in the Val function.

Review the program.

2373
Illegal string specified for the Val
function.

Review the program.

2374
String Failure. Invalid character
code in the string.

Review the program.

2380
Cannot use ' 0 ' for Step value in
For...Next.

Check the Step value.

2381

Relation between For...Next and
GoSub is invalid. Going in or out of
a For...Next using a Goto
statement.

Review the program.

2382
Cannot execute Return while
executing OnErr.

Review the program.

2383
Return was used without GoSub.
Review the program.

Review the program.

2384
Case or Send was used without
Select. Review the program.

Review the program.

2385
Cannot execute EResume while
executing GoSub.

Review the program.

2386
EResume was used without OnErr.
Review the program.

Review the program.

2400
Curve failure. Failed to open the
Curve file.

Reboot the controller.
Create a Curve file again.

2401
Curve failure. Failed to allocate the
header data of the curve file.

Reboot the controller.
Create a Curve file again.

2402
Curve failure. Failed to write the
curve file.

Reboot the controller.
Create a Curve file again.

2403
Curve failure. Failed to open the
curve file.

Reboot the controller.
Create a Curve file again.

2404
Curve failure. Failed to update the
curve file.

Reboot the controller.
Create a Curve file again.

2405
Curve failure. Failed to read the
curve file.

Reboot the controller.
Create a Curve file again.

2406 Curve failure. Curve file is corrupt.
Reboot the controller.
Create a Curve file again.

2407
Curve failure. Specified a file other
than the curve file.

Reboot the controller.
Create a Curve file again.

2408
Curve failure. Version of the curve
file is invalid.

Reboot the controller.
Create a Curve file again.

2409
Curve failure. Robot number in the
curve file is invalid.

Reboot the controller.
Create a Curve file again.

SPEL+ Error Messages

518 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

2410
Curve failure. Cannot allocate
enough memory for the CVMove
statement.

Reboot the controller.

2411
Specified point data in the Curve
statement is beyond the maximum
count.

The maximum number of points
specified in the Curve statement is
200. Review the program.

2412
Specified number of output
commands in the Curve statement
is beyond the maximum count.

The maximum number of output
commands specified in the Curve
statement is 16. Review the
program.

2413
Curve failure. Specified internal
code is beyond the allowable size
in Curve statement.

Reboot the controller.

2414
Specified continue point data P(:)
is beyond the maximum count.

The maximum number of points
specified continuously is 200.
Review the program.

Start point End point

2415
Curve failure.
Cannot create the curve file.

Reboot the controller.
Create a Curve file again.

2416 Curve file does not exist.
Check whether the specified Curve
file name is correct.

2417
Curve failure. Output command is
specified before the point data.

Check whether no output command
is specified before the point data.

2418 Curve file name is too long.
Check whether the specified Curve
file name is correct. The maximum
string length of the file name is 32.

2419
Curve failure.
Curve file path is too long.

Check whether the specified Curve
file name is correct.

2420 Curve file name is invalid.

2430
Error message failure. Error
message file does not exist.

Reboot the controller.

2431
Error message failure. Failed to
open the error message file.

Reboot the controller.

2432
Error message failure. Failed to
obtain the header data of the error
message file.

Reboot the controller.

2433
Error message failure. Error
message file is corrupted.

Reboot the controller.

2434
Error message failure. Specified a
file other than the error message
file.

Reboot the controller.

2435
Error message failure. Version of
the error message file is invalid.

Reboot the controller.

2440
File Error.
File number is used.

Check the file number.

2441
File Error.
Failed to open the file.

Make sure the file exists and you
specified the file correctly.

2442
File Error.
The file is not open.

Open the file in advance.

2443
File Error. The file number is being
used by another task.

Check the program.

2444 File Error. Failed to close the file. Check the file.

2445 File Error. File seek failed.
Review the program.
Check the pointer setting.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 519

No. Message Remedy Note 1 Note 2

2446
File Error.
All file numbers are being used.

Close unnecessary files.

2447
File Error.
No read permision.

Use ROpen or UOpen that has read
access to the file.

2448
File Error.
No write permision.

Use WOpen or UOpen that has write
access to the file.

2449
File Error.
No binary permision.

Use BOpen that has binary access to
the file.

2450
File Error.
Failed to access the file.

Check the file.

2451 File Error. Failed to write the file. Check the file.

2452 File Error. Failed to read the file. Check the file.

2453
File Error.
Cannot execute the commnad for
current disk.

The specified command is not
available in the current disk (ChDisk).

2454 File Error. Invalid disk. Review the program.

2455 File Error. Invalid drive. Review the program.

2456 File Error. Invalid folder. Review the program.

2460
Database Error.
The database number is already
being used.

Review the program.
Specify the number of other
database. Close the database.

2461
Database Error.
The database is not open.

Review the program.
Open the database.

2462
Database Error.
The database number is being
used by another task.

Review the program.

2470
Windows Communication Error.
Invalid status.

Reboot the Controller.
Rebuild the project.

2471
Windows Communication Error.
Invalid answer.

Reboot the Controller.
Rebuild the project.

2472
Windows Communication Error.
Already initialized.

Reboot the Controller.

2473
Windows Communication Error.
Busy.

Reboot the Controller.
Rebuild the project.

2474
Windows Communication Error. No
request.

Reboot the Controller.
Rebuild the project.

2475
Windows Communication Error.
Data buffer overflow.

Reduce the data volume.
Review the program.

2476
Windows Communication Error.
Failed to wait for event.

Reboot the Controller.

2477
Windows Communication Error.
Invalid folder.

Make sure the specified folder is
correct.

2478
Windows Communication Error.
Invalid error code.

Rebuild the project.

2500
Specified event condition for Wait
is beyond the maximum count.

The maximum number of event
conditions is 8. Review the program.

2501
Specified bit number in the Ctr
function was not setup with a
CTReset statement.

Review the program.
The specified
bit number

SPEL+ Error Messages

520 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

2502
Task number is beyond the
maximum count to execute.

The available number of the tasks
that can be executed simultaneously
is 16. Review the program.

2503
Cannot execute Xqt when the
specified task number is already
executing.

Review the program.
The specified
task number

2504
Task failure. Specified manipulator
is already executing a parallel
process.

Rebuild the project.

2505
Not enough data for Input
statement variable assignment.

Check the content of communication
data. Review the program.

2506
Specified variable for the Input
statement is beyond the maximum
count.

For OP, only one variable can be
specified. For other devices, up to
32 variables can be specified.

2507
All counters are in use and cannot
setup a new counter with CTReset.

The available number of the counters
that can be set simultaneously is 16.
Review the program.

2508
OnErr failure. Failed to process the
OnErr statement.

Rebuild the project.

2509
OnErr failure. Failed to process the
OnErr statement.

Rebuild the project.

2510 Specified I/O label is not defined.
The specified I/O label is not
registered. Check the I/O label file.

2511

SyncUnlock statement is used
without executing a previous
SyncLock statement. Review the
program.

Review the program. Signal number

2512
SyncLock statement was already
executed.

The SyncLock statement cannot be
executed for the second time in a
row. Review the program.

Signal number

2513 Specified point label is not defined.
The specified point label is not
registered. Check the point file.

2514
Failed to obtain the motor on time
of the robot.

Reboot the controller.

2515
Failed to configure the date or the
time.

Check whether a date and time is set
correctly.

2516
Failed to obtain the debug data or
to initialize.

Reboot the controller.

2517 Failed to convert into date or time.
Check the time set on the controller.
Reboot the controller.

2518
Larger number was specified for
the start point data than the end
point data .

Specify a larger number for the end
point data than that for the start point
data.

Start point End point

2519
Specified the format for
FmtStr$ can not understand.

Check the format.

2520 Point file name is too long.
Check whether the specified point file
name is correct. The maximum
string length of the file name is 32.

2521
Point failure. Point file path is too
long.

Check whether the specified point file
name is correct.

2522 Point file name is invalid.
Make sure you don’t use improper
characters for file name.

2523
The continue process was already
executed.

Review the program.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 521

No. Message Remedy Note 1 Note 2

2524
Cannot execute Xqt when the
specified trap number is already
executing.

Review the program.

2525 Password is invalid.
Check whether a password is set
correctly.

2526 No wait terms. Rebuild the project.

2527
Too many variables used for global
valiable wait.

Review the program.

2528
The variables cannot use global
valiable wait.

Review the program.

2529
Cannot use Byref if the variables
used for global variable wait.

Review the program.

2530 Too many point files. Check the point file.

2531
The point file is used by another
robot.

Review the program.

2532
Cannot calculate the point position
because there is undefined data.

Check the point data.

2533 Error on INP or OUTP. Review the program.

2534
No main function to start on
Restart statement.

Without executing main function,
Restart is called.

2535
Does not allow Enable setting in
Teach mode to be changed.

Setup the authority.

2536
Failed to change Enable setting in
Teach mode.

Reboot the Controller.

2539 Password is invalid.
Check whether a password is set
correctly.

2546
Cannot turn on the motor
immediately after opening the
safeguard.

Wait 1.5 seconds after the safeguard
is open, and then execute the motor
on.

2900
Failed to open as server to the
Ethernet port.

Check whether the Ethernet port is
set properly. Check whether the
Ethernet cable is connected properly.

2901
Failed to open as client to the
Ethernet port.

Check whether the Ethernet port is
set properly. Check whether the
Ethernet cable is connected properly.

2902
Failed to read from the Ethernet
port.

Check whether the port of
communication recipient is not close.

2904 Invalid IP Address was specified. Review the IP address.

2905
Ethernet failure. No specification of
Server/Client.

Review the program.

2906 Ethernet port was not configured.
Check whether the Ethernet port is
set properly.

Port number

2907
Ethernet port was already in use by
another task.

A single port cannot be used by more
than one task.

Port number

2908
Cannot change the port
parameters while the Ethernet port
is open.

The port parameters cannot be
changed while the port is open.

Port number

2909 Ethernet port is not open.
To use the Ethernet port, execute the
OpenNet statement.

Port number

2910
Timeout reading from an Ethernet
port.

Check the communication. Timeout value

2911
Failed to read from an Ethernet
port.

Check the communication.

2912
Ethernet port was already open by
another task.

A single port cannot be used by more
than one task.

Port number

SPEL+ Error Messages

522 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

2913 Failed to write to the Ethernet port.
Check whether the Ethernet port is
set properly. Check whether the
Ethernet cable is connected properly.

Port number

2914
Ethernet port connection was not
completed.

Check whether the port of
communication recipient is open.

Port number

2915
Data received from the Ethernet
port is beyond the limit of one line.

The maximum length of a line is 255
bytes.

The number of
bytes in a
received line

2920
RS-232C failure. RS-232C port
process error.

Check whether the RS-232C board is
correctly detected.

2921
RS-232C failure. Uncommon error.
RS-232C port read process error.

Check the parameter and
communication.

2926
The RS-232C port hardware is not
installed.

Check whether the RS-232C board is
correctly detected.

Port number

2927
RS-232C port is already open by
another task.

A single port cannot be used by more
than one task.

Port number

2928
Cannot change the port
parameters while the RS-232C port
is open.

The port parameters cannot be
changed while the port is open.

Port number

2929 RS-232C port is not open.
To use the RS-232C port, execute
the OpenCom statement.

Port number

2930
Timeout reading from the RS-232C
port.

Check the communication. Timeout value

2931
Failed to read from the RS-232C
port.

Check the communication.

2932
RS-232C port is already open by
another task.

A single port cannot be used by more
than one task.

Port number

2933 Failed to write to the RS-232C port. Check the communication. Port number

2934
RS-232C port connection not
completed.

Check the RS-232C port.

2935
Data received from the RS-232C
port is beyond the limit of one line.

The maximum length of a line is 255
bytes.

The number of
bytes in a
received line

2937
Cannot execute while Remote RS-
232C are useing.

Specified port is currently used.
Specify another port.

2950
Daemon failure. Failed to create
the daemon thread.

Reboot the Controller.

2951
Daemon failure. Timeout while
creating the daemon thread.

Reboot the Controller.

2952
TEACH/AUTO switching key input
signal failure was detected.

Set the TP key switch to TEACH or
AUTO properly. Check whether the
TP is connected properly.

2953
ENABLE key input signal failure
was detected.

Check whether the TP is connected
properly.

2954 Relay weld was detected.

Overcurrent probably occurred due to
short-circuit failure. Investigate the
cause of the problem and take
necessary measures and then
replace the DPB.

2955
Temperature of regeneration
resistor was higher than the
specified temperature.

Check whether the filter is not
clogged up and the fan does not
stop.
If there is no problem on the filter and
fan, replace the regenerative module.

2970 MNG failure. Area allocate error. Reboot the Controller.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 523

No. Message Remedy Note 1 Note 2

2971 MNG failure. Real time check error. Reboot the Controller.

2972
MNG failure. Standard priority
error.

Reboot the Controller.

2973 MNG failure. Boost priority error. Reboot the Controller.

2974 MNG failure. Down priority error. Reboot the Controller.

2975 MNG failure. Event wait error. Reboot the Controller.

2976 MNG failure. Map close error. Reboot the Controller.

2977 MNG failure. Area free error. Reboot the Controller.

2978 MNG failure. AddIOMem error. Reboot the Controller.

2979 MNG failure. AddInPort error. Reboot the Controller.

2980 MNG failure. AddOutPort error. Reboot the Controller.

2981 MNG failure. AddInMemPort error. Reboot the Controller.

2982
MNG failure. AddOutMemPort
error.

Reboot the Controller.

2983 MNG failure. IntervalOutBit error. Reboot the Controller.

2984 MNG failure. CtrReset error. Reboot the Controller.

2997 Collision was detencted.
If you use the simulator, check if the
object is placed in the direction of the
robot motion.

2998
AbortMotion attempted when robot
was not moving

See Help for AbortMotion.

2999
AbortMotion attempted when robot
was moving

See Help for AbortMotion.

SPEL+ Error Messages

524 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Parser

No. Message Remedy Note 1 Note 2

3000
OBJ file size is large. TP1 may not
be able to build this project.

When it is necessary to build the
project from TP1, consider to reduce
the program.

3050 Main function is not defined. Declare a Main function.
3051 Function does not exist. Declare an unresolved function.
3052 Variable does not exist. Declare an unresolved variable.
3100 Syntax error. Correct the syntax error.

3101 Parameter count error.
The number of parameters is excess
or deficiency. Correct the
parameters.

3102
File name length is beyond the
maximum allowed.

Shorten the file name.

3103 Duplicate function definition. Change the function name.
3104 Duplicate variable definition ‘ ** ’. Change the variable name.

3105
Global and Global Preserve
variables cannot be defined inside
a function block.

Declare the Global and Global
Preserve variables outside the
function block.

3106
An undefined function was
specified.

Specify a valid function name.

3107
Both While and Until for Do...Loop
was specified.

The While/Until statement is
specified for both Do statement and
Loop statement. Delete either
While/Until statement.

3108
Specified line number or label ‘ ** ’
does not exist.

Set the line label.

3109 Overflow error.
The direct numerical specification
overflows. Reduce the numeric
value.

3110
An undefined variable was
specified ‘ ** ’.

There is an undefined variable.
Declare the variable.

3111
Specified variable is not an array
variable.

Specify the array variable.

3112
Cannot change the dimensions of
the array variable.

Dimension of the array cannot be
changed in Redim statement during
the run time. Correct the program.

3114
Specified Next variable does not
match the specified For variable.

Correct the variable name.

3115
Cannot use a point expression in
the first argument.

Specify a single point for the point
flag setting. Do not specify a point
expression.

3116
Array number of dimensions does
not match the declaration.

Check the number of array
dimensions.

3117 File cannot be found.
The file that configures the project
cannot be found. Check the project
folder if the file exists.

3118
Corresponding EndIf cannot be
found.

The number of EndIf statements that
correspond to If and ElseIf
statements is not enough. Add the
EndIf statements.

3119
Corresponding Loop cannot be
found.

The number of Loop statements that
correspond to Do statements is not
enough. Add the Loop statements.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 525

No. Message Remedy Note 1 Note 2

3120
Corresponding Next cannot be
found.

The number of Next statements that
correspond to For statements is not
enough. Add the Next statements.

3121
Corresponding Send cannot be
found.

The number of Send statements that
correspond to Select statements is
not enough. Add the Send
statements.

3123
On/Off statements are beyond the
maximum count.

An upper limit (max. 16) is set on the
number of On/Off statements in
Curve statement. Check the upper
limit and correct the program.

3124

Point number is beyond the
maximum count.

An upper limit (“200” for open curves,
“50” for closed curves) is set on the
available number of points in Curve
statement. Check the upper limit
and correct the program.

3125

Corresponding If cannot be found. The number of EndIf statements that
correspond to If statements is too
many. Delete the unnecessary
EndIf.

3126

Corresponding Do cannot be
found.

The number of Loop statements that
correspond to Do statements is too
many. Delete the unnecessary
Loop.

3127

Corresponding Select cannot be
found.

The number of Send statements that
correspond to Select statements is
too many. Delete the unnecessary
Send.

3128
Corresponding For cannot be
found.

The number of Next statements that
correspond to For statements is too
many. Delete the unnecessary Next.

3129
'_' cannot be used as the first
character of an identifier.

Change the first character of the
identifier to an alphabetic character.

3130
Cannot specify ROT parameter. ROT parameter cannot be specified

in BGo, Go, TGo, Jump, and Jump3
statements. Correct the program.

3131

Cannot specify ECP parameter. ECP parameter cannot be specified
in BGo, Go, TGo, Jump, Jump3, and
Arc statements. Correct the
program.

3132

Cannot specify Arch parameter. Arch parameter cannot be specified
in BGo, Go, TGo, Arc, Arc3, BMove,
Move, and TMove statements.
Correct the program

3133

Cannot specify LimZ parameter. LimZ parameter cannot be specified
in BGo, Go, TGo, Jump3, Arc, Arc3,
BMove, Move, and TMove
statements. Correct the program.

3134

Cannot specify Sense parameter. Sense parameter cannot be
specified in BGo, Go, TGo, Arc,
Arc3, BMove, Move, and TMove
statements. Correct the program.

3135
Invalid parameter is specified. Invalid parameter is specified in Xqt,

and Call statements. Correct the
program.

3136 Cannot use #include.

SPEL+ Error Messages

526 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

3137
Cannot specify the array variable
subscript.

The array variable subscript cannot
be specified. Correct the program.

3138
ByRef was not specified on
Function declaration.

Specify ByRef in the parameter list of
function declaration that is called by
Call statement.

3139

Cannot execute the Xqt statement
for a function that needs a ByRef
parameter.

The Xqt statement cannot be
executed for a function needing a
ByRef parameter. Delete the ByRef
parameter.

3140

Cannot execute the Redim
statement for a ByRef variable.

The Redim statement cannot be
executed for a variable specifying
ByRef parameter. Delete the ByRef
parameter.

3141 OBJ file is corrupt.

3142
OBJ file size is beyond the
available size after compiling.

The compilation result exceeds the
limit value (max. 1 MB per file).
Divide the program.

3143

Ident length is beyond the
available size.

The available length of the identifier
is max. 32 characters for labels and
variable names, and 64 characters
for function names. Reduce the
number of characters so as not to
exceed the available length. For
details of the available length, refer
to EPSON RC+ User’s Guide “6.4
Function and Variable Names
(Naming restriction)”.

3144
' ** ' already used for a function
name.

Correct the identifier ' ** ' or the
function name.

3145
' ** ' already used for a Global
Preserve variable.

Correct the identifier ' ** ' or the
Global Preserve variable name.

3146
' ** ' already used for a Global
variable.

Correct the identifier ' ** ' or the
Global variable name.

3147
' ** ' already used for a Module
variable.

Correct the identifier ' ** ' or the
Module variable name.

3148
' ** ' already used for a Local
variable.

Correct the identifier ' ** ' or the Local
variable name.

3149
' ** ' already used for a I/O label. Correct the identifier ' ** ' or the I/O

label name.

3150
' ** ' already used for a User Error
label.

Correct the identifier ' ** ' or the User
Error label name.

3151
Cannot use a function parameter. Argument cannot be specified for the

function that is executed by the Trap
statement. Correct the program.

3152

Over elements value. Limit value of the array elements
depends on the type of variables.
Refer to EPSON RC+5.0 User’s
Guide “6.7.6 Array” and correct the
number of array elements so as not
to exceed the limit value.

3153

Parameter type mismatch. Parameter type does not match in
Call, Force_GetForces, and Xqt
statements. Correct the parameter
type.

3154 ' ** ' is not Input Bit label. Specify a valid input bit label.

3155 ' ** ' is not Input Byte label. Specify a valid input byte label.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 527

No. Message Remedy Note 1 Note 2

3156 ' ** ' is not Input Word label. Specify a valid input word label.

3157 ' ** ' is not Output Bit label. Specify a valid output bit label.

3158 ' ** ' is not Output Byte label. Specify a valid output byte label.

3159 ' ** ' is not Output Word label. Specify a valid output word label.

3160 ' ** ' is not Memory Bit label. Specify a valid memory I/O bit label.

3161 ' ** ' is not Memory Byte label.
Specify a valid memory I/O byte
label.

3162 ' ** ' is not Memory Word label.
Specify a valid memory I/O word
label.

3163 Too many function arguments.
The maximum number of the
function parameter is 100. Reduce
the number of parameters.

3164 Cannot compare Boolean value.
The size of Boolean values cannot
be compared. Correct the program.

3165
Cannot use Boolean value in the
expression.

Boolean value cannot be used in the
expression. Correct the program.

3166
Cannot compare between Boolean
and expression.

The size of Boolean value and the
expression cannot be compared.
Correct the program.

3167
Cannot store Boolean value to the
numeric variable.

Boolean value cannot be used in the
numeric variable. Correct the
program.

3168
Cannot store numeric value to the
Boolean variable.

The numeric value cannot be used in
Boolean variable. Correct the
program.

3169 Undefined I/O label was specified.
Define a new I/O label or specify the
defined I/O label.

3170
Invalid condition expression was
specified.

String expression is specified for the
right side of the condition expression
in Do or Loop statement. Correct the
condition expression so that the right
side of the expression is Boolean
value.

3171
Cannot compare between numeric
value and string.

The numeric value and string cannot
be compared. Correct the program.

3172
Cannot use keyword for the
variable name.

Some SPEL+ keywords cannot be
used as the variable names. Correct
the variable name not to overlap with
the keywords.

3173 ' ** ' already used for a line label.
Correct the identifier ' ** ' or the line
label name.

3174 Duplicate line number or label (**).

The line labels with the same name
cannot be specified in the same
function. Delete the line label ' ** ',
or define a new line label and correct
the program.

3175
Undefined Point label was
specified.

Define a new point label or specify
the defined point label.

3176
An undefined variable was
specified.

Define a new variable or specify the
defined variable.

3177 ' ** ' already used for a Point label.
Correct the identifier ' ** ' or the point
label name.

SPEL+ Error Messages

528 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

3178 Cannot use the result number.

The result number cannot be
specified when a vision object that
does not return multiple results is
used in VSet and VGet statements.
Correct the program.

3179
String literal is beyond the
available length.

The limit value of the string length is
max. 255 characters. Reduce the
string length so as not to exceed the
limit value.

3180
Cannot change a calibration
property value with the VSet
command.

Calibration property cannot be
changed in VSet statement. Correct
the program.

3181
Array variable should be used with
ByRef.

ByVal cannot be specified for the
array variable. Specify the ByRef
parameter.

3182 Subscription was not specified. Specify a subscription.

3187
Invalid Point flag value was
specified.

Correct the program so that the point
flag value is within the range from 0
to 127.

3188
Call command cannot be used in
parallel processing.

Call command cannot be used
parallel processing. Correct the
program.

3189
Local variables cannot be used
with the Wait command.

Change of local variable cannot be
waited by Wait statement. Correct
the program.

3190
Array variables cannot be used
with the Wait command.

Change of array variable cannot be
waited by Wait statement. Correct
the program.

3191
Real variables cannot be used with
the Wait command.

Change of real variable cannot be
waited by Wait statement. Correct
the program.

3192
String variables cannot be used
with the Wait command.

Change of string variable cannot be
waited by Wait statement. Correct
the program.

3194
Cannot use Boolean value for the
timeout value.

Boolean value cannot be used for
the timeout value of Wait statement.
Correct the program.

3196

Fend is not there. The number of Fend statements that
correspond to Function statements is
not enough. Add the Fend
statements.

3197
Numeric variable name cannot use
'$'.

Numeric variable name cannot use
'$'. Correct the variable name.

3198
String variable should has '$'. String variables must have a '$'

suffix. Add a '$' suffix to the variable
name.

3199

Invalid object is specified. Invalid vision object is specified in
Vision Guide commands such as
VSet and VGet. Specify the valid
vision object.

3200 Value is missing. Add a value.
3201 Expected ' , '. Add ' , '.
3202 Expected ' ('. Add ' ('.
3203 Expected ') '. Add ') '.
3204 Identifier is missing. Specify an identifier.
3205 Point is not specified. Specify a point.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 529

No. Message Remedy Note 1 Note 2

3206
Event condition expression is
missing.

Add an event condition expression.

3207 Formula is missing. Add a formula.

3208 String formula is missing. Add a string formula.

3209 Point formula is missing. Add a point formula.

3210 Line label was not specified.
Check if the specified line label
exists in the program. Add a valid
line label.

3211 Variable was not specified. Specify a variable.

3212
Corresponding Fend cannot be
found.

The number of Fend statements that
correspond to Function statements is
not enough. Add the Fend
statements.

3213 Expected ' : '. Add ' : '.

3214 True/False was not specified.

True/False was not specified in the
property of Vision Guide/GUI Builder
or substitution of logical expression
which requires Boolean value
setting.
Specify True or False.

3215 On/Off was not specified.

On or Off must be specified for the
remote output logic setting of Motor,
Brake, AutoLJM, SetSw, and Box
statements. Specify On or Off.

3216 High/Low was not specified.
High or Low must be specified for the
power mode setting of Power
statement. Specify High or Low.

3217 Input bit label was not specified.

Input bit label is not specified in
SetSW, CTReset statement, Sw, and
Ctr function. Specify a valid input bit
label.

3218 Input byte label was not specified.

Input byte label is not specified in
SetIn statement, In, and InBCD
function. Specify a valid input byte
label.

3219 Input word label was not specified.

Input word label is not specified in
SetInW statement, InReal, and InW
function. Specify a valid input word
label.

3220 Output bit label was not specified.

Output bit label is not specified in
On, Off statement, and Oport
function. Specify a valid output bit
label.

3221
Output byte label was not
specified.

Output byte label is not specified in
Out, OpBCD statement, and Out
function. Specify a valid output byte
label.

3222
Output word label was not
specified.

Output word label is not specified in
OutW, OutReal statement, OutW,
and OutReal function. Specify a
valid output word label.

3223 Memory bit label was not specified.

Memory bit label is not specified in
MemOn, MemOff statement, and
MemSw function. Specify a valid
memory bit label.

SPEL+ Error Messages

530 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

3224
Memory byte label was not
specified.

Memory byte label is not specified in
MemOut statement and MemIn
function. Specify a valid memory
byte label.

3225
Memory word label was not
specified.

Memory word label is not specified in
MemOutW statement and MemInW
function. Specify a valid memory
word label.

3226 User error label was not specified.
User error label is not specified in
Error statement. Specify a valid user
error label.

3227 Function name was not specified.

Function name is not specified in the
statement that requires function
name designation, such as Call and
Xqt. Specify a valid function name.

3228 Variable type was not specified.

Variable type is not specified for the
parameter definition of Function
statement and Preserve parameter
specification of Global statement.
Specify a correct variable type.

3229
Invalid Trap statement parameter.
Use Goto, Call, or Xqt.

Specify either GoTo, Call, or Xqt as a
parameter of Trap statement.

3230 Expected For/Do/Function.
Specify either For, Do, or Function
as a parameter of Exit statement.

3231 Above/Below was not specified.

Setting value for the elbow
orientation is not specified in Elbow
statement. Specify either Above or
Below.

3232 Righty/lefty was not specified.
Setting value for the hand orientation
is not specified in Hand statement.
Specify either Righty or Lefty.

3233 NoFlip/Flip was specified.
Setting value for the wrist orientation
is not specified in Wrist statement.
Specify either NoFilip or Flip.

3234 Port number was not specified.

Port number that indicates the file or
communication port is not specified
in Read, ReadBin, Write, and
WriteBin statements.
Refer to SPEL+ Language
Reference “Read Statement” and
specify a proper file number or port
number.

3235
String type variable was not
specified.

String type variable is not specified in
the command that requires
specification of string type variable
as a parameter. Specify a valid
string type variable.

3236
RS-232C port number was not
specified.

RS-232C port number is not
specified in OpenCom, CloseCom,
and SetCom statements. Refer to
SPEL+ Language Reference
“OpenCom Statement” and specify a
proper port number.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 531

No. Message Remedy Note 1 Note 2

3237
Network communication port
number was not specified.

Network communication port number
is not specified in OpenNet,
CloseNet, SetNet, and WaitNet
statement. Specify an integer from
201 to 216.

3238
Communication speed was not
specified.

Communication speed (baud rate) is
not specified in SetCom statement.
Refer to SPEL+ Language
Reference “SetCom Statement” and
specify a proper baud rate.

3239 Data bit number was not specified.

Data bit length is not specified in
SetCom statement. Refer to SPEL+
Language Reference “SetCom
Statement” and specify a proper data
bit length.

3240 Stop bit number was not specified.

Stop bit length is not specified in
SetCom statement. Refer to SPEL+
Language Reference “SetCom
Statement” and specify a proper stop
bit length.

3241 Parity was not specified.

Parity is not specified in SetCom
statement. Refer to SPEL+
Language Reference “SetCom
Statement” and specify a proper
parity.

3242 Terminator was not specified.

Terminator (end of send/receive line)
is not specified in SetCom and
SetNet statements. Refer to SPEL+
Language Reference “SetCom
Statement” and specify a proper
terminator.

3243 Hardware flow was not specified.

Hardware flow is not specified in
SetCom statement. Refer to SPEL+
Language Reference “SetCom
Statement” and specify a proper flow
control.

3244 Software flow was not specified.

Software flow is not specified in
SetCom statement. Refer to SPEL+
Language Reference “SetCom
Statement” and specify a proper flow
control.

3245 None was not specified.
“NONE” is not specified for software
flow control setting in SetNet
statement. Specify “NONE”.

3246
Parameter ' O ' or ' C ' was not
specified.

Open or close parameter for the end
of a curve is not specified in Curve
statement.
Refer to SPEL+ Language
Reference “Curve Statement” and
specify a proper open/close
parameter.

SPEL+ Error Messages

532 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

3247
NumAxes parameter was not
specified.

The number of coordinate axes
controlled during a curve motion is
not specified in Curve statement.
Refer to SPEL+ Language
Reference “Curve Statement” and
specify a proper number of the
coordinate axes.

3248
J4Flag value (0-1) was not
specified.

Specify 0 or 1, or an expression for
J4Flag value.

3249
J6Flag value (0-127) was not
specified.

Specify an integer from 0 to 127, or
an expression for J6Flag value.

3250 Array variable was not specified.

Array variable is not specified in the
statement that requires specification
of array variable. Specify a valid
array variable.

3251
String Array variable was not
specified.

Array which stores a token must be a
string array variable in ParseStr
statement and ParseStr function.
Specify a string array variable.

3252 Device ID was not specified.

Device ID is not specified in DispDev
statement or Cls command. Refer to
SPEL+ Language Reference
“DispDev Statement” and specify a
proper device ID.

3253 I/O type was not specified.

I/O type is not specified in
IOLabel$ function. Refer to SPEL+
Language Reference
“IOLabel$ Function” and specify a
proper I/O type.

3254 I/O bit width was not specified.

I/O bit size (I/O port width) is not
specified in IODef, IOLabe function.
Refer to SPEL+ Language
Reference “IODef Function” and
specify a proper I/O bit size.

3255 ByRef was not specified.

Although the ByRef is specified in
the function declaration, no ByRef is
specified for calling. Specify the
ByRef parameter.

3256 Variable type was not specified.
Variable type is not specified in
Global statement. Specify a proper
variable type.

3257
Condition expression does not
return Boolean value.

Condition expression in If, ElseIf, Do,
and Loop statement must return a
Boolean value. Correct the
condition expression to return a
Boolean value.

3258
RS232C port number was not
specified.

RS-232C port number is not
specified in ChkCom function. Refer
to SPEL+ Language Reference
“ChkCom Function” and specify a
proper port number.

3259
Network communication port
number was not specified.

Network communication port number
is not specified in ChkNet function.
Refer to SPEL+ Language
Reference “ChkNet Function” and
specify a proper port number.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 533

No. Message Remedy Note 1 Note 2

3260 Language ID was not specified.

Language ID is not specified in
ErrMsg$ function. Refer to SPEL+
Language Reference
“ErrMsg$ Function” and specify a
proper language ID.

3261 Expected '.'. Add '.'.

3262
Vision Sequence Name was not
specified.

Vision sequence name is not
specified in Vision Guide commands
such as VSet, VGet, and VRun. Add
a sequence name.

3263
Vision Sequence Name or
Calibration Name was not
specified.

Vision sequence name or calibration
name is not specified in VSet and
VGet statements. Add a sequence
name or calibration name.

3264
Vision Property Name or Result
Name was not specified.

Vision property name or result name
is not specified in VSet and VGet
statements. Add a property name or
result name.

3265
Vision Property Name, Result
Name or Object Name was not
specified.

Either of Vision property name, result
name, or object name is not
specified in VSet and VGet
statements. Add either of a property
name, result name, or object name.

3266
Vision Calibration Property Name
was not specified.

Vision calibration property name is
not specified in VSet and VGet
statements. Add a property name.

3267 Task type was not specified.

Task type is not specified in Xqt
statement. Refer to SPEL+
Language Reference “Xqt
Statement” and specify a proper task
type.

3268 Form name was not specified.

Form name is not specified in GSet,
GGet, GShow, GShowDialog, and
GClose statements. Specify a form
name.

3269
Property Name or Control Name
was not specified.

Property name or control name is not
specified in GSet and GGet
statements. Specify a property
name or control name.

3270 Property Name was not specified.
Property name is not specified in
GSet and GGet statements. Specify
a property name.

3271 BackColorMode was not specified.

BackColorMode property setting
value is not specified in GSet
statement. Refer to GUI Builder 5.0
manual “BackColorMode Property”
and specify a proper setting value.

3272 BorderStyle was not specified.

BorderStyle property setting value is
not specified in GSet statement.
Refer to GUI Builder 5.0 manual
“BorderStyle Property” and specify a
proper setting value.

3273 DropDownStyle was not specified.

DropDownStyle property setting
value is not specified in GSet
statement. Refer to GUI Builder 5.0
manual “DropDownStyle Property”
and specify a proper setting value.

SPEL+ Error Messages

534 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

3274 EventTaskType was not specified.

EventTaskType property setting
value is not specified in GSet
statement. Refer to GUI Builder 5.0
manual “EventTaskType Property”
and specify a proper setting value.

3275 ImageAlign was not specified.

ImageAlign property setting value is
not specified in GSet statement.
Refer to GUI Builder 5.0 manual
“ImageAlign Property” and specify a
proper setting value.

3276 IOType was not specified.

IOType property setting value is not
specified in GSet statement. Refer
to GUI Builder 5.0 manual “IOType
Property” and specify a proper
setting value.

3277
FormBorderStyle was not
specified.

FormBorderStyle property setting
value is not specified in GSet
statement. Refer to GUI Builder 5.0
manual “FormBorderStyle Property”
and specify a proper setting value.

3278 ScrollBars was not specified.

ScrollBars property setting value is
not specified in GSet statement.
Refer to GUI Builder 5.0 manual
“ScrollBars Property” and specify a
proper setting value.

3279 SizeMode was not specified.

SizeMode property setting value is
not specified in GSet statement.
Refer to GUI Builder 5.0 manual
“SizeMode Property” and specify a
proper setting value.

3280 StartPosition was not specified.

StartPosition property setting value is
not specified in GSet statement.
Refer to GUI Builder 5.0 manual
“StartPosition Property” and specify
a proper setting value.

3281 TextAlign was not specified.

TextAlign property setting value is
not specified in GSet statement.
This error occurs when the control
type cannot be identified because
the control is specified by a string
variable. Refer to GUI Builder 5.0
manual “TextAlign Property” and
specify a proper setting value.

3282 TextAlign was not specified.

TextAlign property setting value is
not specified in GSet statement.
This error occurs when the control is
a text box. Refer to GUI Builder 5.0
manual “TextAlign Property” and
specify a proper setting value.

3283 TextAlign was not specified.

TextAlign property setting value is
not specified in GSet statement.
This error occurs when the control is
other than a text box. Refer to GUI
Builder 5.0 manual “TextAlign
Property” and specify a proper
setting value.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 535

No. Message Remedy Note 1 Note 2

3284 WindowState was not specified.

WindowState property setting value
is not specified in GSet statement.
Refer to GUI Builder 5.0 manual
“WindowState Property” and specify
a proper setting value.

3285 J1FLAG was not specified.
Specify 0 or 1, or an expression for
J1Flag value.

3286 J2FLAG was not specified.
Specify 0 or 1, or an expression for
J2Flag value.

3289 areaID was not specified.

Area number is not specified in
InsideBox and InsidePlane function.
Specify an approach check area
number which returns status by an
integer from 1 to 15.

3300
External definition symbol was
included. (Not in use)

3301
Version of linked OBJ file does not
match.

Not all project files are complied in
the same version. Perform the
rebuild. Rebuild the project.

3302
Linked OBJ file does not match the
compiled I/O label.

The project configuration has been
changed. Rebuild the project.

3303
Linked OBJ file does not match the
compiled user error label.

The project configuration has been
changed. Rebuild the project.

3304
Linked OBJ file does not match the
compiled compile option.

The project configuration has been
changed. Rebuild the project.

3305
Linked OBJ file does not match the
compiled link option.

The project configuration has been
changed. Rebuild the project.

3306
Linked OBJ file does not match the
compiled SPEL option.

The project configuration has been
changed. Rebuild the project.

3307 Duplicate function.
The same function name is used for
more than one file. Correct the
program (function name).

3308 Duplicate global preserve variable.
The same global preserve variable
name is used for more than one file.
Correct the program (variable name).

3309 Duplicate global variable.
The same global variable name is
used for more than one file.
Correct the program (variable name).

3310 Duplicate module variable.
The same module variable name is
used for more than one file.
Correct the program (variable name).

3311 File cannot be found.

3312 OBJ file is corrupt.

3313
The specified file name includes
character(s) that cannot be used.

3314 Cannot open the file.
The file is used for other application.
Quit the other application.

3315
' ** ' is already used for the function
name.

Correct the identifier ' ** ' or the
function name. Rebuild the project.

3316
' ** ' is already used for the global
preserve variable.

Correct the identifier ' ** ' or the
global preserve variable name.
Rebuild the project.

SPEL+ Error Messages

536 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

3317
' ** ' is already used for the global
variable.

Correct the identifier ' ** ' or the
global variable name. Rebuild the
project.

3318
' ** ' is already used for the module
variable.

Correct the identifier ' ** ' or the
module variable name. Rebuild the
project.

3319
Dimension of the array variable
does not match the declaration.

Correct the dimension of the array
and rebuild the project.

3320
Return value type of the function
does not match the declaration.

Correct the return value type of the
function and rebuild the project.

3321
' ** ' is already used with function
name.

Correct the identifier ' ** ' or the
function name. Rebuild the project.

3322
' ** ' is already used with Global
Preserve name.

Correct the identifier ' ** ' or the
global preserve variable name.
Rebuild the project.

3323
' ** ' is already used with Global
name.

Correct the identifier ' ** ' or the
global variable name. Rebuild the
project.

3324
' ** 'is already used with Module
name.

Correct the identifier ' ** ' or the
module variable name. Rebuild the
project.

3325
' ** ' is already used with Local
name.

Correct the identifier ' ** ' or the local
variable name. Rebuild the project.

3326
The number of parameters does
not match the declaration.

Check the number of parameters in
the function, correct the program,
and then rebuild the project.

3327
ByRef was not specified on
Function declaration on parameter
**.

3328
ByRef was not specified on
parameter **.

3329 Parameter ** type mismatch.

3330
Linked OBJ file does not match the
compiled Vision Project.

Rebuild the project.

3331
OBJ file size is beyond the
available size after linking.

The OBJ file size exceeds the limit
value (8MB). Reduce the program.

3332 Variable '**' is redefined.
Variable ' ** ’ is overloaded. Delete
unnecessary variable definition and
rebuild the project.

3333
Linked OBJ file does not match the
compiled GUI Builder Project.

Rebuild the project.

3334
The number of variable which is
using Wait command are beyond
the maximum allowed.

The number of variables which is
using Wait command is exceeding
the maximum allowed (64). Delete
the variables and rebuild the project.

3335
Call cannot use in the parallel
processing.

Call cannot be used in parallel
processing. Correct the program
and rebuild the project.

3336 Variable was redefined.
Correct the data type of the variable
and rebuild the project.

3405 DialogResult was not specified.

DialogResult property setting value is
not specified in GSet statement.
Refer to GUI Builder 5.0
“DialogResult Property” and specify
a proper setting value.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 537

No. Message Remedy Note 1 Note 2

3406 MsgBox_Type was not specified.

Display type is not specified in
MsgBox statement. Refer to SPEL+
Language Reference “MsgBox
Statement” and specify a proper
setting value.

3408
Single array variable was not
specified.

The number of dimensions is not
proper in the command where single
array variable is only available.
Correct the number of dimensions.

3409 Point list was not specified.

Pixel coordinate or robot coordinate
is not specified as a continuous point
data in VxCalib statement. Specify a
continuous point data in the following
format: P (start : end)

3411 EdgeType was not specified.

EdgeType property setting value is
not specified in VSet statement.
Refer to Vision Guide 5.0 Properties
& Results Reference “EdgeType
Property” and specify a proper
setting value.

3414 Point was not specified.

PointType property setting value is
not specified in VSet statement.
Refer to Vision Guide 5.0 Properties
& Results Reference “PointType
Property” and specify a proper
setting value.

3415 Reference was not specified.

ReferenceType property setting
value is not specified in VSet
statement. Refer to Vision Guide 5.0
Properties & Results Reference
“ReferenceType Property” and
specify a proper setting value.

3500
Duplicate macro in #define
statement.

Another macro with the same name
has been defined. Change the
macro name.

3501 Macro name was not specified.
Macro name is not specified in
#define, #ifdef, #ifndef, and #undef
statements. Add a macro name.

3502 Include file name cannot be found.
Include file name is not specified in
#include statement. Add a valid
include file name.

3503
Specified include file is not in the
project.

The include file that is not registered
in the project configuration is
specified. Add the include file to the
project configuration.

3504
Parameter of the macro function
does not match to the declared.

Check the number of parameters
and correct the macro function.

3505 Macro has a circular reference.
The macro has a circular reference.
Correct the circular reference.

3506

#define, #ifdef, #ifndef, #else,
#endif, #undef and variable
declaration statements are only
valid in an include file.

Check and correct the content of
include file.

3507 Over #ifdef or #ifndef nesting level.
Reduce the nesting level to under
the limited value.

SPEL+ Error Messages

538 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

3508
Cannot find corresponding #ifdef or
#ifndef.

The number of #endif statements
that correspond to #ifdef and #ifndef
statements is too many. Delete
#endif statements or add the #ifdef
and #ifndef statements.

3509
No #endif found for #ifdef or
#ifndef.

The number of #endif statements
that correspond to #ifdef and #ifndef
statements is not enough. Add the #
endif statements.

3510 Cannot obtain the macro buffer.

3550
Parameter for the macro function
was not specified.

The macro declared as a macro
function is called without argument.
Correct the program.

3601

Parameter type is mismatch for the
external function '%s'. Confirm all
place which are using this function,
in this file.

LJM parameter cannot be specified
in BGo, TGo, Arc, Arc3, BMove,
Move, and TMove statements.
Delete the LJM parameter.

3602
The specified motion command
cannot use LJM parameter.

InReal function cannot be used with
Wait statement. Correct the
program.

3603
InReal function cannot use with
Wait statement.

PerformMode parameter cannot be
specified in Jump3, Jump3CP, Arc,
Arc3, BMove, Move, and TMove
statements. Delete the
PerformMode parameter.

3800 Compile process aborted.

3801 Link process aborted.

3802
Compile process aborted. Compile
errors reached the maximum
count.

Correct the error in the program and
rebuild the project.

3803
Link process aborted. Link errors
reached the maximum count.

Correct the error in the program and
rebuild the project.

3804
Specified command cannot be
executed from the Command
window.

Declaration of variables and
functions, program control statement,
preprocessor commands, and some
commands cannot be executed from
the command window. For details,
refer to SPEL+ Language Reference
“Appendix A：SPEL+ Command
Use Condition List”.

3805
Specified command can only be
executed from the Command
window.

Brake, SysConfig, Where,
Cnv_QueList, and WorlQue_List
statements can only be executed
from the command window. Delete
these statements from the program.

3806
Specified function cannot be
executed from the Command
window.

LogIn function cannot be executed
from the command window even
when used with Print statement. Use
the function in the program.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 539

No. Message Remedy Note 1 Note 2

3808
Specified parameter cannot be
used with the current version.

LJM and PerformMode parameters
of motion commands may not be
specified depending on the compiler
version.
LJM parameter: 6.0.x.x or later
PerformMode parameter: 7.0.4.x or
later
Check the compiler version from the
project property.

3809
Module variable cannot be used
from the Command window.

Module variable cannot be accessed
from the command window. Check
the input command.

3810
The number of point file is beyond
the limit.

There are too many point files.
Reduce some point files that are
registered to project.

3811
The number of points is beyond
the limit.

There are too many points defined by
registered point files.
Reduce some points.

3850 File not found.

3900
Uncommon error. Cannot obtain
the internal communication buffer.

3901 Buffer size is not enough.

3910
Undefined command was
specified.

3911
Cannot enter the file name in the
file name buffer.

3912 Cannot obtain the internal buffer.

3913 Cannot set priority. Reboot the controller.

3914 Invalid ICode. Rebuild the project.

3915 Invalid ICode. Rebuild the project.

3916 Invalid ICode. Rebuild the project.

3917 Invalid ICode. Rebuild the project.

3918 Invalid ICode. Rebuild the project.

3919 Invalid ICode. Rebuild the project.

3920 Invalid ICode. Rebuild the project.

3921 Invalid ICode. Rebuild the project.

SPEL+ Error Messages

540 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Motor Control

No. Message Remedy Note 1 Note 2

4001
Arm reached the limit of motion
range.

Check the point to move, current
point, and Range setting.

4002
Specified value is out of allowable
range.

Review the setting parameters.

The
parameter
causing the
error

4003
Motion device driver failure.
Communication error within the
motion control module.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4004
Motion device driver failure.
Event waiting error within the
motion control module.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4005
Current point position is above the
specified LimZ value.

Lower the Z axis. Increase the
specified LimZ value.

4006
Target point position is above the
specified LimZ value.

Lower the Z coordinate position of
the target point. Increase the
specified LimZ value.

4007

Coordinates conversion error.
The end/mid point is out of the
motion area. Jogging to the out of
the motion area.

Check whether the coordinate out of
the motion range is not specified.

4008
Current point position or specified
LimZ value is out of motion range.

Change the specified LimZ value.

4009
Motion device driver failure.
Timeout error within motion control
module.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4010
Specified Local coordinate was not
defined.

Define the Local coordinate system. Local number

4011
Arm reached the limit of XY motion
range specified by XYLim
statement.

Check the area limited by the XYLim
statement.

4013
Motion control module internal
calculation error.

Calculation of the timing of Arch
motion failed. Perform either of the
following:
- Check and modify Arch parameter
- Disable Arch

4016
SFree statement was attempted for
prohibited joint(s).

Due to robot mechanistic limitation,
setting some joint(s) to servo free
status is prohibited. Check the robot
specifications.

4018
Communication error within the
motion control module.
Check sum error.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4021
Point positions used to define the
Local are too close.

Set the distance between points
more than 1μm.

4022
Point coordinate data used to
define the Local is invalid.

Match the coordinate data for the
points to be specified.

4023
Cannot execute when the motor is
in the off state.

Turn the motor power ON and then
execute.

4024
Cannot complete the arm
positioning using the current Fine
specification.

Check whether the robot does not
generate vibration or all parts and
screws are secured firmly. Increase
the Fine setting value.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 541

No. Message Remedy Note 1 Note 2

4025
Cannot execute a motion
command during emergency stop
condition.

Clear the emergency stop condition
and execute the motion command.

4026
Communication error within the
motion control module. Servo I/F
failure.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4028
Communication error within the
motion control module. Device
driver status failure.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4030

Buffer for the average torque
calculation has overflowed.
Shorten the time interval from Atclr
to Atrq.

Shorten the time interval from Atclr to
Atrq less than about two minutes.

4031
Cannot execute a motion
command when the motor is in the
off state.

Turn the motor power ON and then
execute the motion command.

4032
Cannot execute a motion
command when one or more joints
are in SFree state.

Set all joints to the SLock state and
execute the motion command.

4034
Specified command is not
supported for this manipulator
model.

Use the Jump3 and Jump3CP
statements.

4035
Only the tool orientation was
attempted to be changed by the
CP statement.

Set a move distance between points.
Use the ROT modifier, SpeedR
statement, and AccelR statement.

4036
Rotation speed of tool orientation
by the CP statement is too fast.

Decrease the setting values for the
SpeedS and AccelS statements.
Use the ROT modifier, SpeedR
statement, and AccelR statement.

4037
The point attribute of the current
and target point positions differ for
executing a CP control command.

Match the point attribute.

4038
Two point positions are too close
to execute the Arc statement.

Set the distance between points
more than 1μm.

4039
Three point positions specified by
the Arc statement are on a straight
line.

Use the Move statement.

4041
Motion command was attempted to
the prohibited area at the backside
of the robot.

Check the robot motion range.

4042
Motion device driver failure.
Cannot detect the circular format
interruption.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4043
Specified command is not
supported for this manipulator
model or this joint type.

Remove the unsupported command
from the program.

4044
Curve failure. Specified curve form
is not supported.

Create a Curve file again with the
Curve statement.

4045
Curve failure. Specified mode is
not supported.

Specify the Curve mode properly.
Create a Curve file again with the
Curve statement.

4046
Curve failure. Specified coordinate
number is out of the allowable
range.

The number of the available
coordinate axes is 2, 3, 4, and 6.
Create a Curve file again with the
Curve statement.

SPEL+ Error Messages

542 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

4047
Curve failure. Point data was not
specified.

Create a Curve file again with the
Curve statement.

4048
Curve failure. Parallel process was
specified before the point
designation.

Create a Curve file again with the
Curve statement.

4049
Curve failure. Number of parallel
processes is out of the allowable
range.

Create a Curve file again with the
Curve statement.

4050
Curve failure. Number of points is
out of the allowable range.

The number of available point
numbers differs according to the
curve form. Check the number of
points again.

4051
Curve failure. Local attribute and
the point attribute of all specified
points do not match.

Match the local and point flag for all
the specified points.

4052
Curve failure. Not enough memory
to format the curve file.

Reboot the controller.

4053
Curve failure. Failed to format the
curve file.

Review the point data. Check
whether adjacent two points do not
overlap on the specified point line.

4054 Curve failure. Curve file error
The Curve file is broken. Create a
Curve file again with the Curve
statement.

4055
Curve failure. No distance for
curve file movement.

Review the point data.

4056
Curve failure. Point positions for
the Curve statement are too close.

Set the distance between two points
adjacent to the specified point more
than 0.001 mm.

4059
Executed encoder reset command
while the motor is in the on state.

Turn the motor power OFF.

4060
Executed an invalid command
while the motor is in the on state.

Turn the motor power OFF.

4061 Specified parameter is in use.

You attempted to clear the currently
specified Arm and Tool.
Select other Arm and Tool and
execute.

4062
Orientation variation is over 360
degrees.

You attempted to rotate the joint #J6
more than 360 degrees with a CP
motion command.

4063
Orientation variation of adjacent
point is over 90 degrees.

On the specified point line by the
Curve statement, set the orientation
variation of U, V, and W coordinate
values between two adjacent points
to under 90 degrees.

4064
Cannot execute the orientation
correction automatically.

On the specified point line, a curve
cannot be created by automatic
orientation correction.
Change the specified point line so
that the joint #J6 orientation variation
decreases.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 543

No. Message Remedy Note 1 Note 2

4065
Attempt to revolve J6 one rotation
with the same orientation in CP
statement.

You attempted to rotate the joint #J6
more than 360 degrees with a CP
motion command. You attempted to
revolve the joint 6 one rotation with
the same as motion start orientation.
Change the target point so that the
joint #J6 revolves less than one
rotation.

4066
Motion command was attempted in
the prohibited area depended on
joint combination.

You attempted to move the joints to
the robot's interference limited area.

4068

ROT modifier parameter was
specified for the CP motion
command without orientation
rotation.

Delete the ROT from the CP motion
command.

4069
Specified ECP without selecting
ECP in CP statement.

Specify a valid ECP.

4070
Specified ECP number does not
match the ECP number used in
curve file creation.

Specify a valid ECP.

4071
Attempted motion command during
electronic brake lock condition.

Release the electromagnetic brake

4072
Initialization failure. Hardware
monitor was not initialized.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4074
Motor type does not match the
current robot setting.

Check whether the specified robot
model is connected.

4075 ECP Option is not active. Enable the ECP option.

4076
Point positions used to define the
Plane are too close.

Set the distance between points
more than 1 μm.

4077
Point coordinate data used to
define the Plane is invalid.

Match the coordinate data for the
points to be specified.

4080
Cannot execute when the Enable
Switch is OFF.

Turn the Enable Switch ON and then
execute.

4085
Failed to change to specified
location.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4086
Cannot execute because it is not
dry run mode.

Change to the dry run mode and
execute.

4099
Servo error was detected during
operation.

Check if a 5000 number error is
occurring in the system history. If
the error is occurring, take measures
for a 5000 number error.

4100
Communication error in motion
control module. Cannot calculate
the current point or pulse.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4101
Communication error in the motion
control module. Cannot calculate
the current point or pulse.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4103
Initialization failure. Motion control
module initialization error.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4105
EMERGENCY connector
connection failure.

4106 Drive unit failure.

SPEL+ Error Messages

544 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

4150
Redundant input signal failure of
the emergency stop.

The input status of the redundant
emergency stop input continuously
differs for more than two seconds.
Check whether no disconnection,
earth fault, or short-circuit of the
emergency stop input signal exits.
Then reboot the controller.

4151
Redundant input signal failure of
the safeguard.

The input status of the redundant
emergency stop input continuously
differs for more than two seconds.
Check whether no disconnection,
earth fault, or short-circuit of the
emergency stop input signal exits.
Then reboot the controller.

4152
Relay welding error of the main
circuit.

A relay welding error was detected
due to power system over current.
Replace the controller.
Replace the robot.

4153
Redundant input signal failure of
the enable switch.

The input status of the redundant
enable signal differs continuously for
more than two seconds.
Check the TP connector connection.
Replace the TP.
Replace the controller.

4154
Temperature of regeneration
resistor was higher than the
specified temperature.

Robot’s Duty is too high. Lengthen
the waiting time or reduce the Accel
value. If the error occurs although
Duty was lowered, replace the DPB.

4180
Manipulator initialization failure.
Specified manipulator was is not
found.

Configure the manipulator.

4181
Manipulator initialization failure.
Specified manipulator was in use
by another task.

Specified manipulator cannot be
configured since it is already
configured.

4182
Manipulator initialization failure.
Manipulator name is too long.

Shorten the manipulator name.

4183
Manipulator initialization failure.
Manipulator data version error.

Reconfigure the manipulator.

4187
Manipulator initialization failure.
Communication error with the
module : VSRCMNPK.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4188
Manipulator initialization failure.
Joint angle interference matrix is
invalid.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4189
Manipulator initialization failure.
Communication error with the
module : VSRCMC.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4191
Manipulator initialization failure.
Physical-logical pulse
transformation matrix is invalid.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4192
Manipulator initialization failure.
Communication error with the
servo module.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

4210

RAS circuit detected the servo
system malfunction. Reboot the
controller. Measure the noise.
Replace the controller.

Reboot the controller, take the
measure against noise, or replace
the DMB.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 545

No. Message Remedy Note 1 Note 2

4211
Servo CPU internal RAM failure.
Reboot the controller. Measure the
noise. Replace the DMB.

Reboot the controller, take the
measure against noise, or replace
the DMB.

4212

RAM for the main and servo CPU
communication failure. Reboot the
controller. Measure the noise.
Replace the DMB.

Reboot the controller, take the
measure against noise, or replace
the DMB.

4213
Servo CPU internal RAM failure.
Reboot the controller. Measure the
noise. Replace the DMB.

Reboot the controller, take the
measure against noise, or replace
the DMB.

4214

Initialization communication of
main CPU and servo CPU failure.
Reboot the Controller. Measure the
noise. Replace DMB.

Reboot the controller, take the
measure against noise, or replace
the DMB.

4215

Initialization communication of the
main and servo CPU failure.
Reboot the controller. Noise
measure. Replace the DMB.

Reboot the controller, take the
measure against noise, or replace
the DMB.

4216

Communication of the main and
servo CPU failure. Reboot the
controller. Measure the noise.
Replace the DMB.

Reboot the controller, take the
measure against noise, or replace
the DMB.

4217

Communication of the main and
servo CPU failure. Reboot the
controller. Measure the noise.
Replace the DMB.

Reboot the controller, take the
measure against noise, or replace
the DMB.

4218 Servo long time command overrun.
Reboot the controller, take the
measure against noise, or replace
the DMB.

4219
Servo long time command check
sum error.

Reboot the controller, take the
measure against noise, or replace
the DMB.

4220

System watchdog timer detected
the failure. Reboot the controller.
Measure the noise. Replace the
DMB.

Reboot the controller, take the
measure against noise, or replace
the DMB.

4221 Drive unit check failure.
Reboot the controller, take the
measure against noise, or replace
the DMB.

4222
RAM failure of the servo CPU.
Reboot the controller. Measure the
noise. Replace the DMB.

Reboot the controller, take the
measure against noise, or replace
the DMB.

4223
Failure of duplicate circuit of the
emergency stop or the safeguard.
Check the wiring.

Check the wiring of the emergency
stop or the safeguard.

4224

Low voltage of the main circuit
power supply is detected. Check
the power supply voltage. Reboot
the controller.

Check the power supply voltage, or
reboot the controller.

4225
Control relay contact of the main
circuit power supply is welded.
Replace the DPB.

Replace the DPB.

SPEL+ Error Messages

546 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

4230
Servo real time status failure.
Check sum error.

A data checksum error was detected
in the controller.
Check the short-circuit and improper
connection of the peripheral
equipment wiring. (Emergency, D-
I/O, and Expansion I/O connectors)
Replace the controller.

4232
Servo real time status failure.
Free running counter error with the
servo.

A free running counter error was
detected in the controller.
Check the short-circuit and improper
connection of the peripheral
equipment wiring. (Emergency, D-
I/O, and Expansion I/O connectors)
Replace the controller.

4233
Servo real time status failure.
Communication error with the
servo CPU.

A communication error was detected
in the controller.
Check the short-circuit and improper
connection of the peripheral
equipment wiring. (Emergency, D-
I/O, and Expansion I/O connectors)
Replace the controller.

4240
Irregular motion control interruption
was detected.
Interruption duplicate.

A interruption error was detected in
the controller.
Check the short-circuit and improper
connection of the peripheral
equipment wiring. (Emergency, D-
I/O, and Expansion I/O connectors)
Replace the controller.

4241
Over speed during low power
mode was detected.

The robot over speed was detected
during low power mode.
Check the robot mechanism.
(Smoothness, backlash, non-smooth
motion, loose belt tension, brake)
Check whether the robot does not
interfere with peripheral equipment.
(Collision, contact)
Replace the motor driver.
Replace the motor. (Motor and
encoder failure)
Check the short-circuit and improper
connection of the peripheral
equipment wiring. (Emergency, D-
I/O, and Expansion I/O connectors)

4242
Improper acceleration reference
was generated.

You attempted to operate the robot
with the acceleration reference
exceeding the specified value.
For a CP motion, decrease the
AccelS value.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 547

No. Message Remedy Note 1 Note 2

4243
Improper speed reference is
generated in the high power mode.

The robot over speed was detected
during high power mode.
Check the robot mechanism.
(Smoothness, backlash, non-smooth
motion, loose belt tension, brake)
Check whether the robot does not
interfere with peripheral equipment.
(Collision, contact)
Replace the motor driver.
Replace the motor. (Motor and
encoder failure)
Check the short-circuit and improper
connection of the peripheral
equipment wiring. (Emergency, D-
I/O, and Expansion I/O connectors)

4250
Arm reached the limit of motion
range during the operation.

Check whether a CP motion
trajectory is within the motion range.

4251
Arm reached the limit of XY motion
range specified by XYLim during
the operation.

Check the XYLim setting.

4252
Coordinate conversion error
occurred during the operation.

Check whether a CP motion
trajectory is within the motion range.

4267
Attempt to exceed the J4Flag
attribute without indication.

You attempted to exceed the J4Flag
attribute during motion without the
J4Flag indication.
Change the J4Flag for the target
point.

4268
Attempt to exceed the J6Flag
attribute without indication.

You attempted to exceed the J6Flag
attribute during motion without the
J6Flag indication.
Change the J6Flag for the target
point.

4269
Attempt to exceed the particular
wrist orientation attribute without
indication.

You attempted to exceed the
particular wrist orientation attribute
during motion without the Wrist
indication.
Change the Wrist attribute for the
target point.
Change the target point to avoid a
particular wrist orientation.

4270
Attempt to exceed the particular
arm orientation attribute without
indication.

You attempted to exceed the
particular hand orientation attribute
during motion without the Hand
indication.
Change the Hand attribute for the
target point.
Change the target point to avoid a
particular hand orientation.

4271
Attempt to exceed the particular
elbow orientation attribute without
indication.

You attempted to exceed the
particular elbow orientation attribute
during motion without the Elbow
indication.
Change the Elbow attribute for the
target point.
Change the target point to avoid a
particular elbow orientation.

SPEL+ Error Messages

548 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

4272 Specified point flag is invalid.

For a CP motion command, the arm
form at the target point is different
from the point flag specified with the
target point.
Change the point flag for the target
point.

4273
J6Flag switched during the lift
motion in coveyor tracking

Adjust the Tool orientation so that
J6Flag will not switch

4274
Manipulator motion did not match
to J6Flag of the target point

For a CP motion command, the
manipulator reached to the target
point with J6Flag which differs from
the one specified for the target point.
Change J6Flag for the target point.

4275
Manipulator motion did not match
to J4Flag of the target point

For a CP motion command, the
manipulator reached to the target
point with J4Flag which differs from
the one specified for the target point.
Change J4Flag for the target point.

4276
Manipulator motion did not match
to ArmFlag of the target point

For a CP motion command, the
manipulator reached to the target
point with ArmFlag which differs from
the one specified for the target point.
Change ArmFlag for the target point.

4277
Manipulator motion did not match
to ElbowFlag of the target point

For a CP motion command, the
manipulator reached to the target
point with ElbowFlag which differs
from the one specified for the target
point.
Change ElbowFlag for the target
point.

4278
Manipulator motion did not match
to WristFlag of the target point

For a CP motion command, the
manipulator reached to the target
point with WristFlag which differs
from the one specified for the target
point.
Change WristFlag for the target
point.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 549

Servo

No. Message Remedy Note 1 Note 2

5000
Servo control gate array failure.
Check the DMB.

Check the short-circuit and improper
connection of the peripheral
equipment wiring. (Emergency and
I/O connectors)
Replace the DMB.
Replace the additional axis unit.

5001

Disconnection of the parallel
encoder signal. Check the signal
cable connection or the robot
internal wiring.

Check the M/C cable signal.
Check the robot signal wiring.
(Missing pin, disconnection, short-
circuit)
Replace the motor.
Replace the DMB.
Check the connector connection in
the controller. (Loosening,
connecting to the serial encoder
terminal on the DMB)
Check the model setting.
Check the peripheral equipment
wiring. (Emergency and I/O)

5002
Motor driver is not installed. Install
the motor driver. Check the DMB
or the motor driver.

Check whether the motor driver is
mounted.
Check the model setting and
hardware setting.
Replace the motor driver.
Replace the DMB.

5003

Initialization communication failure
of incremental encoder. Check the
signal cable connection and the
robot setting.

Check the model setting.
Replace the motor.
Replace the DMB.

5004
Initialization failure of absolute
encoder. Check the signal cable
connection or the robot setting.

Check the model setting.
Replace the motor.
Replace the DMB.

5005
Encoder division setting failure.
Check the robot setting.

Check the model setting.

5006

Data failure during absolute
encoder initialization. Check the
signal cable connection, the
controller, or the motor.

Replace the motor.
Replace the DMB.
Check the noise countermeasures.

5007
Absolute encoder multi-turn is
beyond the maximum range.
Reset the encoder.

Reset the encoder.
Replace the motor.

5008
Position is out of the range. Reset
the encoder.

Reset the encoder.
Replace the DMB.
Replace the motor.

5009

No response from the serial
encoder. Check the signal cable
connection, the motor, the DMB, or
the encoder IF board.

Check the model setting. (Improperly
setting of the parallel encoder model)
Check the signal cable connection.
Replace the DMB and encoder I/F
board.

5010

Serial encoder initialization failure.
Reboot the controller.
Check the motor, the DMB, or the
encoder IF board.

Check the robot configuration.
Check the signal cable connection.
Replace the DMB and encoder I/F
board.

SPEL+ Error Messages

550 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

5011

Serial encoder communication
failure. Reboot the controller.
Check the motor, the DMB, or the
encoder IF board.

Check the robot configuration.
Check the signal cable connection.
Replace the DMB and encoder I/F
board.

5012
Servo CPU watchdog timer failure.
Reboot the controller.
Check the motor or the DMB.

Replace the DMB.
Check the noise countermeasures.

5013
Current control circuit WDT failure.
Reboot the controller.
Check the controller.

Check the power cable connection.
Check the 15V power supply and
cable connection.
Replace the DMB.
Check the noise countermeasures.

5015
Encoder is reset. Reboot the
controller.

Reboot the controller.

5016

Power supply failure of the
absolute encoder. Replace the
battery. Check the robot internal
wiring.

Reset the encoder.
Check the signal cable connection.

5017
Backup data failure of the absolute
encoder. Reset the encoder.

Reset the encoder.
Check the signal cable connection.

5018 Absolute encoder battery alarm.
Replace the battery.
Check the signal cable connection.

5019
Position failure of the absolute
encoder. Reset the encoder.
Replace the motor.

Reset the encoder.
Replace the motor.

5020
Speed is too high at controller
power ON. Stop the robot and
reboot the controller.

Reboot the controller.

5021 Absolute encoder overheat.
Lower the motion duty.
Wait until the temperature of the
encoder decreases.

5022
R/D transducer failure.
Check the resolver board.

Check the noise countermeasure.
Replace the resolver board.

5023
G sensor communication failure.
Check the control board.

Check the M/C signal cable.
Check the robot signal wiring (for pin
falling, disconnection, short).
Check the noise countermeasure.
Replace the control board.
Replace the DMB.

5024
G sensor data failure.
Check the control board.

Replace the control board.

5025
Resolver mixing failure.
Reset the encoder.

Reset the resolver.
Check the noise countermeasure.
Replace the resolver board.

5026
Resolver signal disconnection.
Check the motor and resolver
board.

Check the robot signal wiring.
Replace the resolver board.

5027
S-DSP communication failure.
Check-sum error, Free-run counter
error

Reboot the controller.
Replace the DMB.
Check the noise countermeasure.

5028
Current data failure.
Data update stopped. Parity error.

Reboot the controller.
Replace the DMB.
Check the noise countermeasure.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 551

No. Message Remedy Note 1 Note 2

5029
D-DSP communication failure.
Check-sum error, Free-run counter
error

Reboot the controller.
Replace the DMB.
Check the noise countermeasure.

5032 Servo alarm A. Reboot the controller.

5040

Motor torque output failure in high
power state. Check the power
cable connection, the robot, the
driver or the motor.

Specify the Weight/Inertia setting.
Check the load.
Check the robot. (Smoothness,
backlash, non-smooth motion, loose
belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable connection.
Check the robot power wiring.
(Missing pin, disconnection, short-
circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

5041

Motor torque output failure in low
power state. Check the power
cable connection, robot, brake,
driver, or motor.

Check the robot. (Smoothness,
backlash, non-smooth motion, loose
belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable connection.
Check the robot power wiring.
(Missing pin, disconnection, short-
circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

5042

Position error overflow in high
power state. Check the power
cable connection, the robot, the
driver and the motor.

Specify the Weight/Inertia setting.
Check the load.
Check the robot. (Smoothness,
backlash, non-smooth motion, loose
belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable connection.
Check the robot power wiring.
(Missing pin, disconnection, short-
circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

SPEL+ Error Messages

552 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

5043

Position error overflow in low
power state. Check the power
cable connection, robot, brake,
driver, or motor.

Check the robot. (Smoothness,
backlash, non-smooth motion, loose
belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable connection.
Check the robot power wiring.
(Missing pin, disconnection, short-
circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

5044

Speed error overflow in high power
state. Check the power cable
connection, robot, brake, driver, or
motor.

Specify the Weight/Inertia setting.
Check the load.
Check the robot. (Smoothness,
backlash, non-smooth motion, loose
belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable connection.
Check the robot power wiring.
(Missing pin, disconnection, short-
circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

5045

Speed error overflow in low power
state. Check the power cable
connection, robot, brake, drive, or
motor.

Check the robot. (Smoothness,
backlash, non-smooth motion, loose
belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable connection.
Check the robot power wiring.
(Missing pin, disconnection, short-
circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 553

No. Message Remedy Note 1 Note 2

5046

Over speed in high power state.
Reduce SpeedS. Check the signal
cable connection, robot, brake,
driver or motor.

Reduce SpeedS of the CP motion.
Change the orientation of the CP
motion.
Specify the Weight/Inertia setting.
Check the load.
Check the robot. (Smoothness,
backlash, non-smooth motion, loose
belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable connection.
Check the robot power wiring.
(Missing pin, disconnection, short-
circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

5047
Over speed in low power state.
Check the signal cable connection,
robot, brake, driver, or motor.

Check the motion in high power
state.
Check the robot. (Smoothness,
backlash, non-smooth motion, loose
belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable connection.
Check the robot power wiring.
(Missing pin, disconnection, short-
circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

5048

Over voltage of the main power
circuit. Check the main power
voltage or the regeneration
module.

Specify the Weight/Inertia setting.
Check the load.
Check the robot. (Smoothness,
backlash, non-smooth motion, loose
belt tension, brake)
Check the interference with the
peripheral equipment. (Collision,
contact)
Check the model setting.
Check the power cable connection.
Check the robot power wiring.
(Missing pin, disconnection, short-
circuit)
Check the power supply voltage.
(Low power supply voltage)
Replace the motor driver.
Replace the DMB.
Replace the motor.

SPEL+ Error Messages

554 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

5049
Over current of the motor driver.
Check the power cable connection
or the robot internal wiring.

Check the short-circuit and earth
fault of the power line.
Replace the motor driver.
Replace the DMB.

5050
Over speed during torque control.
Check the work motion speed
range.

Check the motion speed during
torque control.

5051
15V PWM drive power supply
failure. Reboot the controller.
Replace the 15V power supply.

Check the 15V power supply and
cable connection.
Replace the motor driver.
Replace the DMB.

5054
Overload of the motor. Decrease
the motion duty and the Accel.

Lower the motion duty.
Check the Weight/Inertia setting.
Check the robot. (Backlash, large
load, loose belt tension, brake)

5055
Overload of the motor. Decrease
the operation duty and the Accel.

Lower the motion duty.
Check the Weight/Inertia setting.
Check the robot. (Backlash, large
load, loose belt tension, brake)

5056
G sensor output failure.
Check the control board.

Check the noise countermeasures.
Replace the control board.

5072 Servo alarm B. Reboot the controller.

5080
Motor is overloaded. Decrease the
duty and the Accel.

Lower the motion duty.
Check the Weight/Inertia setting.
Check the robot. (Backlash, large
load, loose belt tension, brake)

5098
High temperature of the encoder.
Decrease the duty. Check the
reduction gear unit of the robot.

Wait until the temperature of the
encoder decreases.
Lower the motion duty.
Check the Weight/Inertia setting.
Check the robot. (Backlash, large
load, loose belt tension, brake)

5099

High temperature of the motor
driver . Clean the controller fan
filter. Check the ambient
temperature. Decrease the duty.

Clean the cooling fan filter.
Lower the motion duty.
Check the Weight/Inertia setting.
Lower the ambient temperature.

5112 Servo alarm C. Reboot the controller.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 555

Vision Calibration
No. Message Remedy Note 1 Note 2

6001 Calibration number is out of range.
Correct the calibration
number.

6002 Calibration data is not defined. Perform calibration.

6003 Camera mounting direction is out of range.
Correct the
CameraOrientation value.

6004 2-point measurement flag is out of range.
Correct the TwoRefPoint
value.

6005 There is an invalid data in the pose data. Re-teach the points.

6006
Calibration failure: Invalid data prevents
calculation.

Perform point teaching and
calibration again.

6007
Coordinate conversion: Invalid data prevent
calculation.

Reteach the points.

6009 Calibration file name is not correct.
Correct the calibration file
name.

6010 Calibration file does not exist.
Correct the calibration file
name.

6012 Failed to load the calibration file.
Correct the calibration file
name.

6013 Failed to write into the calibration file.
Check access permission
for the project folder.

6014
Specify continuous 9 data for the Pixel
coordinate.

Make sure that at least 9
results are obtained in the
vision sequence.

6015
Specify continuous 18 data for the Pixel
coordinate.

Make sure that at least 18
results are obtained in the
vision sequence.

6016
Specify continuous 9 data for the Robot
coordinate.

Reteach the points.

6017
Specify continuous 18 data for the Robot
coordinate.

Reteach the points.

6018
Specify continuous 9 data and 1 reference
point for the Robot coordinate.

Perform point teaching and
calibration again.

6019
Specify continuous 9 data and 2 reference
points for the Robot coordinate.

Perform point teaching and
calibration again.

SPEL+ Error Messages

556 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Points

No. Message Remedy Note 1 Note 2

7003
The specified robot cannot be
found.

Reboot the controller.
Initialize the control firmware.

7004
Duplicate allocation of the point
data area.

Reboot the controller.
Initialize the control firmware.

7006
Specified point number cannot be
found. Specify a valid point
number.

Check the specified point number.

7007
Specified point number was not
defined. Specify a teach point
number.

Check whether point data is
registered in the specified point.
Perform the teaching.

7010
Cannot allocate the memory area
for the pallet definition.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7011
Cannot free the memory area for
the pallet definition.

Reboot the controller.
Initialize the controller firmware.

7012
Specified pallet number cannot be
found. Specify a valid pallet
number.

Check the pallet number.

7013
Specified pallet is not defined.
Specify a defined pallet or define
the pallet.

Check whether the specified pallet is
defined by the Pallet statement.
Declare the pallet.

7014
Specified division number is
beyond the pallet division number
definition. Specify a valid division.

Check the specified division number.

7015
Specified coordinate axis number
does not exist.

Check the specified coordinate axis
number.

7016
Specified arm orientation number
does not exist.

Check the specified arm orientation
number.

7017
Cannot allocate the required
memory.

Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7018
Specified point label cannot be
found. Specify a valid point label.

Check the specified point label.

7019
Parameter setup in the initialization
file is invalid.

Reboot the controller.
Initialize the controller firmware.

7021
Duplicate point label. Specified
label name is already registered.
Change the label name.

Change the point label.

7022
Specified local coordinate system
is not defined. Specify a valid local
coordinate system number.

Check the specified local number.
Define the Local coordinate system.

7023
Specified string is not in the correct
format.

7024
Point data memory area for the
specified robot is not allocated.

Rebuild the project.

7026
Cannot open the point file. Specify
a valid point file name.

Check the point file name.
Check whether the point file
specified for the project exists.

7027
Cannot read the point data from
the point file.

Create the point file again.

7028
Point area is allocated beyond the
available point number.

There are too many points.
Review the number of points.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 557

No. Message Remedy Note 1 Note 2

7029
Specified point file name is not
correct. Specify a valid point file
name.

Check the file extension.

7030
Specified point label is beyond the
maximum length. Specify a valid
point label.

Change the point label.

7031
Description for the specified point
is beyond the maximum length.
Specify a valid description.

Change the comment.

7032
Point file is corrupted. Check sum
error.

Create the point file again.

7033
Specified point file cannot be
found. Specify a valid point file
name.

Check the name of the specified
point file.

7034 Cannot save the point file.

Failed to save the point file (create a
temporary file).
Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7035 Cannot save the point file.

Failed to save the point file (file
open).
Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7036 Cannot save the point file.

Failed to save the point file (renew
the file header).
Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7037 Cannot save the point file.

Failed to save the point file (create
the file name).
Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7038 Cannot save the point file.

Failed to save the point file (copy the
file).
Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7039 Cannot save the point file.

Failed to save the point file (change
the file name).
Reboot the controller.
Initialize the controller firmware.
Replace the controller.

7040
The point label is not correct.
Specify a valid point point label.

The initial character of the point label
name is improper. Correct the label
name.

7041
The point label is not correct.
Specify a valid point point label.

Inadequate character is used.
Correct the label name.

SPEL+ Error Messages

558 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Fieldbus

No. Message Remedy Note 1 Note 2

7101
Communication error occur during
transform.

The module is broken or the
controller software is damaged.
Restore the controller firmware.

1
2
3
4
10

A communication data error was
detected during communication. The
communication cable has a problem.
Check the communication cable and
its related units.

11

12

The module is broken or the
controller software is damaged.
Restore the controller firmware.

13

14

15

The PLC is not running or not
connected.
Check the PLC, the communication
cable, and peripherals.
(If Code 1 is 22 when the CC-Link
board is used.)

22

7103
Timeout error occurs during
transform.

The module is broken or the
controller software is damaged.
Restore the controller firmware.
(If Code 1 is 1, 2, or 3)

1

2

3

A communication data error was
detected during communication. The
communication cable has a problem.
Check the communication cable and
its related units.

4

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 559

Vision

No. Message Remedy Note 1 Note 2

7300
Vision Communication.
Server mode not supported.

7302
Vision Communication.
Failed to read from the camera.

Check the connection with the
camera.

7303
Vision Communication.
Read data overflow.

Data exceeding the receive buffer
was received.

7304
Vision Communication.
Failed to open the Ethernet port.

Check the connection with the
camera.

7305
Vision Communication.
Invalid IP address of camera.

Rebuild the project. Check the
camera configuration.

7306
Vision Communication. No
specification of Server/Client.

7307
Vision Communication.
Failed to send to the camera.

Check the connection with the
camera.

7308
Vision Communication.
Camera version is old.

The version of the connected camera
is old. Update the camera.

7321
Vision Communication.
Camera setting has not been set.

Rebuild the project. Check the
camera configuration.

7322
Vision Communication.
Read timeout.

Check the connection with the
camera.

7323
Vision Communication.
Read invalid data.

Check the connection with the
camera.

7324
Vision Communication.
Failed to send to the camera.

Check the connection with the
camera.

7325
Vision Communication.
Connection is not completed.

Check the connection with the
camera.

7326
Vision Communication.
Read data is too long.

7327
Vision Communication.
Undefined vision sequence.

Check the sequence name.

7328
Vision Communication.
Camera setting has not been set.

Rebuild the project. Check the
camera configuration.

7329
Vision Communication.
Vis file is not found.

Rebuild the project. Check the
camera configuration.

7330
Vision Communication.
Failed to allocate memory.

Reduce the number of sequences,
objects, and calibration.

7341
Vision Communication.
Out of max camera number.

Review the camera registration.

7342
Vision Communication.
Invalid camera number.

Review the camera registration.

7343
Vision Communication.
VSet parameter is too long.

Review the names and string
variables of sequences, objects, and
calibration.

7344
Vision Communication:
Too many parameters for VGet.

The number of specified variables is
exceeding 32. Reduce the number
of parameters.

7345
Vision Communication.
Not enough data for VGet
statement variable assignment.

Reboot the camera.
Check the version of the camera.

7346

Vision Communication.
 Cannot execute a Vision
statement from the command
window.

Execute the command from the
program.

SPEL+ Error Messages

560 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

7500 Smart camera. Out of memory.
Initialize the camera.
Reduce the project size.

7501
Smart camera. Project does not
exist.

Rebuild the project.

7502
Smart camera. Project has not
been set.

Rebuild the project.

7503
Smart camera. Vision property or
result not supported.

Update the camera firmware.

7504
Smart camera. Cannot open
project file.

Rebuild the project.

7505 Undefined vision sequence.
Check the sequence name.
Rebuild the project.

7506 Undefined vision object.
Check the object name.
Rebuild the project.

7507 Smart camera. Critical error.
Initialize the camera.
Rebuild the project.

7508 Smart camera. Invalid command. Update the camera firmware.

7509 Invalid vision property value.
Check the property value.
Update the camera firmware.

7510 Invalid vision property.
Check the property name.
Update the camera firmware.

7511 Vision model not trained. Teach the model.

7512 Undefined vision calibration.
Check the calibration name.
Rebuild the project.

7513 Vision model object not Self. Check the property value.

7514 Invalid vision result.
Check the result name.
Update the camera firmware.

7515 Vision object not found.
Check the Found result before
obtaining the result.

7516 No vision calibration. Check the calibration name.

7517 Incomplete vision calibration. Perform calibration.

7518
Smart camera.
Cannot connect with camera.

Check the camera connection.

7519
Smart camera.
Communication error.

Check the camera connection.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 561

GUI Builder

No. Message Remedy Note 1 Note 2

7600
Cannot execute a GUI Builder
statement from the command
window.

GUI Builder commands are only available
in the program.

7602 GSet parameter is too long. Correct the parameter to the proper length.
7603 Too many parameters for GGet. Check the number of parameters.

7604
Not enough data for GGet
statement variable assignment.

Specify the variable.

7610
The event task cannot be
executed. System in pause state
and EventTaskType is Normal.

The system can be operated by changing
EventTaskType to “NoPause”

7611
The event task cannot be
executed. Safeguard is open and
EventTaskType is Normal.

The system can be operated by changing
EventTaskType to “NoEmgAbort”

7612

The event task cannot be
executed. Estop is active and
EventTaskType is not
NoEmgAbort.

The system can be operated by changing
EventTaskType to “NoEmgAbort”

7613

The event task cannot be
executed. System in error state
and EventTaskType is not
NoEmgAbort.

The system can be operated by changing
EventTaskType to “NoEmgAbort”

7650 Invalid property. Specify the valid property.
7651 Invalid form. Specify the valid form.
7652 Invalid control. Specify the valid control.

7653 The specified form is already open.
Modify the program to avoid double
launch.

7654 Event function does not exist. Check the function name set for the event.
7655 The item does not exist. Specify the valid item.

7656 Invalid property value.
Check the property value and specify the
valid value.

SPEL+ Error Messages

562 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Hardware

No. Message Remedy Note 1 Note 2

9001

Emergency stop circuit failure was
detected. Disconnection or other failure
was found in one of the redundant
inputs.

Check whether no disconnection, earth
fault, or short-circuit of the emergency stop
input signal exits. Then reboot the
controller.

9002
Safeguard circuit failure was detected.
Disconnection or other failure was found
in one of the redundant inputs.

Check whether no disconnection, earth
fault, or short-circuit of the safeguard input
signal exits. Then reboot the controller.

9011
Battery voltage of the CPU board
backup is lower than the specified
voltage. Replace the CPU board battery.

Replace the battery for the CPU board
immediately. Keep the controller ON as
long as possible until the battery is
replaced.

9012
5V input voltage for CPU board is lower
than the specified voltage.

If normal voltage is not generated by 5V
power supply alone, replace the power
supply.

9013
24 V input voltage for the motor brake,
encoder and fan is lower than the
specified voltage.

If normal voltage is not generated by 24V
power supply alone, replace the power
supply.

9014
Internal temperature of the Controller is
higher than the specified temperature.

Stop the controller as soon as possible
and check whether the ambient
temperature of the controller is not high.
Check whether the filter is not clogged up.

Current
value

Boundary
value

9015
Rotating speed of the controller fan is
below the allowed speed. (FAN1)

Check whether the filter is not clogged up.
If the warning is not cleared after the
controller is rebooted, replace the fan.

Current
value

Boundary
value

9016
Rotating speed of the controller fan is
below the allowed speed. (FAN2)

Check whether the filter is not clogged up.
If the warning is not cleared after the
controller is rebooted, replace the fan.

Current
value

Boundary
value

9017
Internal temperature of the Controller is
higher than the specified temperature.

Stop the controller as soon as possible
and check whether the ambient
temperature of the controller is not high.
Check whether the filter is not clogged up.

9100
Initialization failure.
Failed to allocate memory.

Reboot the controller.

9101 Message queue has become full.

9233
The Fieldbus I/O driver is in an abnormal
state.

The module is broken or the controller
software is damaged. Restore the
controller firmware.

9234 Fieldbus I/O driver initialization failure.
The module is broken or the controller
software is damaged. Restore the
controller firmware.

9610
RAS circuit detected a servo system
malfunction. Reboot the controller.
Check for noise. Replace the controller.

Check the noise countermeasures.
Replace the DMB.

9611
Servo CPU internal RAM failure. Reboot
the controller. Check for noise. Replace
the DMB.

Check the noise countermeasures.
Replace the DMB.

9612

RAM for the main and servo CPU
communication failure. Reboot the
controller. Check for noise. Replace the
DMB.

Check the noise countermeasures.
Replace the DMB.

9613
Servo CPU internal RAM failure. Reboot
the controller. Check for noise. Replace
the DMB.

Check the noise countermeasures.
Replace the DMB.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 563

No. Message Remedy Note 1 Note 2

9614

Initialization communication of main
CPU and servo CPU failure. Reboot
the Controller. Check for noise.
Replace DMB.

Check the noise countermeasures.
Replace the DMB.

9615

Initialization communication of the main
and servo CPU failure. Reboot the
controller. Check for noise. Replace the
DMB.

Check the noise countermeasures.
Replace the DMB.

9616
Communication of the main and servo
CPU failure. Reboot the controller.
Check for noise. Replace the DMB.

Check the noise countermeasures.
Replace the DMB.

9617
Communication of the main and servo
CPU failure. Reboot the controller.
Check for noise. Replace the DMB.

Check the noise countermeasures.
Replace the DMB.

9618 Servo long time command overrun.
Check the noise countermeasures.
Replace the DMB.

9619
Servo long time command check sum
error.

Check the noise countermeasures.
Replace the DMB.

9620
System watchdog timer detected a
failure. Reboot the controller. Check for
noise. Replace the DMB.

Check the noise countermeasures.
Replace the DMB.

9621 Drive unit check failure.
Check the noise countermeasures.
Replace the DMB.

9622
RAM failure of the servo CPU. Reboot
the controller. Check for noise. Replace
the DMB.

Check the noise countermeasures.
Replace the DMB.

9623
Failure of the redundant circuitry for the
emergency stop or the safeguard.
Check the wiring.

Check the noise countermeasures.
Replace the DMB.

9624
Low voltage of the main circuit power
supply was detected. Check the power
supply voltage. Reboot the controller.

Check the noise countermeasures.
Replace the DMB.

9625
Control relay contact of the main circuit
power supply is welded closed. Replace
the DPB.

Replace the DMB.

9630
Servo real time status failure.
Check sum error.

Reboot the controller.
Replace the DMB.
Check the noise countermeasures.

9632
Servo real time status failure.
Servo free running counter error

Reboot the controller.
Replace the DMB.
Check the noise countermeasures.

9633
Servo real time status failure.
Servo CPU communication error.

Reboot the controller.
Replace the DMB.
Check the noise countermeasures.

9640
Irregular motion control interruption was
detected.
Interruption duplicate.

Reboot the controller.
Replace the DMB.
Check the noise countermeasures.

9700
Servo control gate array failure. Check
the DMB.

Check the short-circuit and improper
connection of the peripheral equipment
wiring. (Emergency and I/O connectors)
Replace the DMB.
Replace the additional axis unit.

SPEL+ Error Messages

564 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

No. Message Remedy Note 1 Note 2

9701
Disconnection of the parallel encoder
signal. Check the signal cable
connection or the robot internal wiring.

Check the M/C cable signal.
Check the robot signal wiring. (Missing pin,
disconnection, short-circuit)
Replace the motor. (Encoder failure)
Replace the DMB. (Detection circuit
failure)
Check the connector connection in the
controller. (Loosening, connecting to the
serial encoder terminal on the DMB)
Check the model setting. (Improperly
setting of the parallel encoder)
Check the peripheral equipment wiring.
(Emergency and I/O)

9702
Motor driver is not installed. Install the
motor driver. Check the DMB or the
motor driver.

Check whether the motor driver is
mounted.
Check the model setting and hardware
setting.
Replace the motor driver.
Replace the DMB.

9703
Initialization communication failure of
incremental encoder. Check the signal
cable connection and the robot setting.

Check the model setting.
Replace the motor. (Encoder failure)
Replace the DMB.

9704
Initialization failure of absolute encoder.
Check the signal cable connection or the
robot setting.

Check the model setting.
Replace the motor. (Encoder failure)
Replace the DMB.

9705
Encoder division setting failure.
Check the robot setting.

Check the model setting.

9706
Data failure at the absolute encoder
initialization. Check the signal cable
connection, the controller, or the motor.

Replace the motor. (Encoder failure)
Replace the DMB.
Check the noise countermeasures.

9707
Absolute encoder multi-turn is beyond
the maximum range. Reset the encoder.

Reset the encoder.
Replace the motor. (Encoder failure)

9708
Position is out of the range.
Reset the encoder.

Reset the encoder.
Replace the DMB.
Replace the motor. (Encoder failure)

9709

No response from the serial encoder.
Check the signal cable connection, the
motor, the DMB, or the encoder IF
board.

Check the model setting. (Improperly
setting of the parallel encoder model)
Check the signal cable connection.
Replace the DMB and encoder I/F board.

9710
Serial encoder initialization failure.
Reboot the controller. Check the motor,
the DMB, or the encoder IF board.

Check the robot configuration.
Check the signal cable.
Replace the DMB and encoder I/F board.

9711
Serial encoder communication failure.
Reboot the controller. Check the motor,
the DMB, or the encoder IF board.

Check the robot configuration.
Check the signal cable.
Replace the DMB and encoder I/F board.

9712
Servo CPU watchdog timer failure.
Reboot the controller. Check the motor
or the DMB.

Replace the DMB.
Check the noise countermeasures.

9713
Current control circuit WDT failure.
Reboot the controller. Check the
controller.

Check the power cable connection.
Check the 15V power supply and cable
connection.
Replace the DMB.
Check the noise countermeasures.

9715 Encoder is reset. Reboot the controller. Reboot the controller.

9716
Power supply failure of the absolute
encoder. Replace the battery to a new
one. Check the robot internal wiring.

Reset the encoder.
Check the signal cable connection.

SPEL+ Error Messages

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 565

No. Message Remedy Note 1 Note 2

9717
Backup data failure of the absolute
encoder. Reset the encoder.

Reset the encoder.
Check the signal cable connection.

9718 Absolute encoder battery alarm.
Replace the battery.
Check the signal cable connection.

9719
Position failure of the absolute encoder.
Reset the encoder. Replace the motor.

Reset the encoder.
Replace the motor. (Encoder failure)

9720
Speed is too high at controller power
ON. Stop the robot and reboot the
controller.

Reboot the controller.

9721 Absolute encoder over heat.
Lower the motion duty.
Wait until the temperature of the encoder
decreases.

9722
R/D transducer failure.
Check the resolver board.

Check the noise countermeasure.
Replace the resolver board.

9723
G sensor communication failure.
Check the control board.

Check the M/C signal cable.
Check the robot signal wiring (for pin
falling, disconnection, short).
Check the noise countermeasure.
Replace the control board.
Replace the DMB.

9724
G sensor data failure.
Check the control board.

Replace the control board.

9725
Resolver mixing failure.
Reset the encoder.

Reset the resolver.
Replace the resolver board.

9726
Resolver signal disconnection.
Check the motor and resolver board.

Check the robot signal wiring.
Replace the resolver board.

9727
S-DSP communication failure.
Check-sum error, Free-run counter error

Reboot the controller.
Replace the DMB.
Check the noise countermeasure.

9728
Current data failure.
Data update stopped. Parity error.

Reboot the controller.
Replace the DMB.
Check the noise countermeasure.

9729
D-DSP communication failure.
Check-sum error, Free-run counter error

Reboot the controller.
Replace the DMB.
Check the noise countermeasure.

9732 Servo alarm A.

SPEL+ Error Messages

566 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

EPSON RC+

No. Message Remedy Note 1 Note 2

7713 Option not enabled.

7714 File not found.
10000 Command aborted by user

10001 Command timeout.
10002 Bad point file line syntax

10003 Project could not be built.

10004 Cannot initialize Spel class instance.
10005 Cannot initialize parser.

10006 Cannot initialize wbproxy.

10007 Project does not exist. Check whether the project
name and the path are correct.

10008 No project specified. Specify the project.

10009 Cannot open file. Check whether the project
name and the path are correct.

10010 Cannot create file.

10011 File not found Check whether the project
name and the path are correct.

10012 Option not enabled

10013
Cannot execute LoadPoints with
Robot Manager open.

Close the robot manager and
execute.

10014
Project cannot be locked. It is being
used by another session.

Terminate other applications.

10015 Project could not be synchronized.

10016 Drive not ready Check whether the drive
designation is correct.

10017 Invalid IP address Check the IP address.

10018 Invalid IP mask Check the IP mask.

10019 Invalid IP gateway Check the IP gateway.

10020
IP address or gateway cannot be the
subnet address

Check the IP address.

10021
IP address or gateway cannot be the
broadcast address

Check the IP address.

10022 Invalid DNS address Check the DNS.

10023
Commands cannot be executed
because the project build is not
complete.

Execute after the project build
is completed.

10024 Invalid task name. Check the task name.

10025 Trial runtime expired.

10100 Command already in cycle.
10101 Command aborted by user.

Precaution of EPSON RC+ Ver.4.* Compatibility

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 567

Precaution of EPSON RC+ Ver.4.* Compatibility

Overview

This section contains information for customers using EPSON RC+ 5.0 with
RC170/RC180 Controller that have already used EPSON RC+ Ver.4.* with RC520 or
RC420.
EPSON RC+ 5.0 and EPSON RC+ Ver.4.* differs in such as harware, adaptable
manipulators, number of joint allowance, and software execution enviornment. Please
read this section and understand the contents for the safety use of the Robot system.
EPSON RC+ 5.0 is an improved software that has compatibility with products before
EPSON RC+ 5.0 and designed to innovate advanced software technologies. However,
some parts do not have compatibility with EPSON RC+ Ver.4.* or have been deleted to
specialize in the robot controller and for ease of use.
The following compatibility is indicated based on EPSON RC+ Ver.4.* compared to
EPSON RC+ 5.0.

Precaution of EPSON RC+ Ver.4.* Compatibility

568 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

General Differences
General differences of EPSON RC+ Ver.4.* and EPSON RC+ 5.0 are as follows.

Item EPSON RC+ 5.0 EPSON RC+ Ver.4.*

Number of task Up to 16 tasks Up to 32 tasks
Type of task Able to specify NoPouse task

Able to specify NoEmgAbort task
Able to specify NoPouse task

Special TRAP
such as TRAP ERROR

Not supported Supported

Task starts by TRAP number Dedicated task number Task number only using 1 to 32
Number of significant figure for
Real type

6 digits No specification

Number of significant figure for
Double type

14 digits No specification

Array elements number Other than string variable As far as the memory remains
Local variable
Global variable
Module variable
Global Preserve variable

1000
10000
10000
1000

String variable
Local variable
Global variable
Module variable
Global Preserve variable

100
1000
1000

100
Line number Not supported Supported
Device number 21:PC

22:REMOTE
23:OP

1:Controller
2:REMOTE
3:OP

Timer number range 0 to 15 0 to 63
Signal No range
for SyncLock, SyncUnlock

0 to 15 1 to 32

Signal No range
for WaitSig, Signal

0 to 5 0 to 127

Port No of Ethernet 201 to 208 128 to 147
Port No of
RS-232C communication

1 to 8 1 to 16

OpenCom execution of
RS-232C communication port

Mandatory Optional

Input/output to files Not supported Supported
Fieldbus I/O Use normal I/O commands Use special commands
Group in the project Not supported Supported
Error number New error numbers

Precaution of EPSON RC+ Ver.4.* Compatibility

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 569

Compatibility List of Commands
+ Function expansion / function changes have been made with upper compatibility.
− No changes.
! Pay attention. Function changes or syntax changes have been made.
!! Pay attention. Significant changes have been made.
× Deleted.

Command Compatibility Note

A Abs Function −

 Accel Statement + Able to specify more than 100 for some
robots

 Accel Function −
 AccelR Statement −
 AccelR Function −
 AccelS Statement −
 AccelS Function −
 Acos Function + Argument range check has been added
 Agl Function −
 AglToPls Function −
 And Operator −
 AOpen Statement ×
 Arc Statement −
 Arc3 Statement −
 Arch Statement −
 Arch Function −
 Arm Statement −
 Arm Function −
 ArmClr Statement −
 ArmSet Statement −
 ArmSet Function −
 Asc Function −
 Asin Function + Argument range check has been added
 Atan Function −
 Atan2 Function −
 ATCLR Statement −
 ATRQ Statement −
 ATRQ Function −
B Base Statement −
 BClr Function + Argument range check has been added
 Beep Statement ×
 BGo Statement −
 BMove Statement −
 Boolean Statement −
 BOpen Statement ×
 Brake Statement −
 BSet Function + Argument range check has been added
 BTst Function + Argument range check has been added
 Byte Statement −

Precaution of EPSON RC+ Ver.4.* Compatibility

570 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Command Compatibility Note
C Calib Statement ×
 Call Statement −
 CalPls Statement ×
 CalPls Function −
 Chain Statement ×
 ChDir Statement ×
 ChDrive Statement ×
 ChkCom Function −
 ChkNet Function −
 Chr$ Function −
 Clear Statement ! Renamed to ClearPoints
 Close Statement ×
 CloseCom Statement −
 CloseNet Statement + Able to specify All

 ClrScr Statement ! Remaned to Cls
Device ID can be spscified for argumants

 Cnv_** ×

 Cont ! Can be executed only from the event handler
of GUI Builder

 Cont Statement ×
 Copy Statement ×
 Cos Function −
 CP Statement −
 CP Function −
 Ctr Function −
 CTReset Statement −
 CtrlDev Statement ×
 CtrlDev Function ! Changed device ID
 CtrlInfo Function !! Changed the obtaining contents
 CurDir$ Function ×
 CurDrive$ Function ×
 CurPos Function −
 Curve Statement −
 CVMove Statement −
 CX to CW Statement −
 CX to CW Function −
D Date Statement −
 Date$ Function −
 Declare Statement ×
 DegToRad Function −
 Del Statement ×
 Dir Statement ×
 Dist Function −
 Do...Loop Statement −
 Double Statement ! Significant figure is 14 digits
E EClr Statement ×
 ECP Statement −

Precaution of EPSON RC+ Ver.4.* Compatibility

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 571

Command Compatibility Note
 ECP Function −
 ECPClr Statement −
 ECPSet Statement −
 ECPSet Function −
 Elbow Statement −
 Elbow Function −
 ENetIO_**** ×
 Eof Function ×
 EPrint Statement ×
 Era Function + Able to ommit the task number
 Erase Statement ×
 EResume Statement −
 Erf$ Function + Able to ommit the task number
 Erl Function + Able to ommit the task number
 Err Function −
 ErrHist Statement ×
 ErrMsg$ Function ! Argument has language ID
 Error Statement + Able to specify task number for arguments
 Ert Function −
 EStopOn Function + Able to specify Wait
 Eval Function ×
 Exit Statement −
F FbusIO_**** × Normal I/O command avaiable
 FileDateTime$ Function ×
 FileExists Function ×
 FileLen Function ×
 Find Statement −
 FindPos Function −
 Fine Statement −
 Fine Function −
 Fix Function −
 FmtStr$ Statement !! Function is limited significantly
 FoldrExist Function ×
 For...Next −
 FreeFile Function ×
 Function...Fend −
G GetCurrentUser$ Function ×
 Global Statement −
 Go Statement −
 Gosub...Return −
 Goto Statement −
H Halt Statement −
 Hand Statement −
 Hand Function −
 Here Statement −
 Here Function −

Precaution of EPSON RC+ Ver.4.* Compatibility

572 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Command Compatibility Note
 Hex$ Function −
 Hofs Statement ×
 Hofs Function −
 Home Statement −
 HomeSet Statement −
 HomeSet Function −
 HOrdr Statement −
 HOrdr Function −
 Hour Statement −
 Hour Function −
 HTest Statement ×
 HTest Function ×
I If...EndIf −
 ImportPoints Statement ×
 In Function −
 In($n) Statement × Replaced to MemIn
 InBCD Function −
 Inertia Statement −
 Inertia Function −
 InPos Function −
 Input Statement −
 Input# Statement + Input is available from devices
 InputBox Statement −
 InStr Function −
 Int Function −
 Integer Statement −
 InW Function −
 InW($n) Statement × Replaced to MemInW
 IONumber Function −
J J4Flag Statement −
 J4Flag Function −
 J6Flag Statement −
 J6Flag Function −
 JA Function −
 JRange Statement −
 JRange Function −
 JS Function ! Returns True/False
 JT Function −
 JTran Statement −
 Jump Statement −
 Jump3 Statement −
 Jump3CP Statement −
K Kill Statement ×
L LCase$ Function −
 Left$ Function −
 Len Function −

Precaution of EPSON RC+ Ver.4.* Compatibility

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 573

Command Compatibility Note
 LimZ Statement −
 LimZ Function −
 Line Input Statement −
 Line Input# Statement + Input is available from devices
 LoadPoints ! Extension (.pnt) has changed to (.pts)
 Local Statement ! Local number “0” is an error
 Local Function ! Local number “0” is an error
 LocalClr Statement −
 Lof Function −
 LogIn Statement ×
 Long Statement −
 LPrint Statement ×
 LSet$ Function −
 LShift Function + Argument range check has been added
 LTrim$ Function −
M Mask Operator −
 MCal Statement ×
 MCalComplete Function ×
 MCofs Statement ×
 MCofs Function ×
 MCordr Statement ×
 MCordr Function ×
 Mcorg Statement ×
 MemIn Function −
 MemInW Function −
 MemOff Statement −
 MemOn Statement −
 MemOut Statement −
 MemOutW Statement −
 MemSw Function −
 Mid$ Function −
 MKDir Statement ×
 Mod Operator −
 Motor Statement −
 Motor Function −
 Move Statement −
 MsgBox Statement −
 MyTask Function −
N Not Operator −
O Off Statement −
 Off$ Statement × Replaced to MemOff
 OLRate Statement −
 OLRate Function −
 On Statement −
 On$ Statement × Replaced to MemOn
 OnErr −

Precaution of EPSON RC+ Ver.4.* Compatibility

574 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Command Compatibility Note
 OP_* ×
 OpBCD Statement −
 OpenCom Statement ! OpenCom is mandatory
 OpenNet Statement −
 Oport Function −
 Or Operator −
 Out Statement −
 Out Function −
 Out$ Statement × Replaced to MemOut
 OutW Statement −
 OutW Function −
 OutW$ Statement × Replaced to MemOutW
P PAgl Function −
 Pallet Statement −
 Pallet Function −
 ParsStr Statement −
 ParsStr Function −
 Pass Statement + Able to specify continuous point
 Pause Statement −
 PauseOn Function −
 PDef Function −
 PDel + Argument check has been added
 PLabel$ Function −
 PLabel Statement −

 PList ! Argument check has been added
Function of Plist* has been deleted

 PLocal Statement −
 PLocal Function −
 Pls Function −
 PNumber Function −
 Point Assignment −
 Point Expression −
 POrient Statement ×
 POrient Function ×
 PosFound Function ! Returns True/False
 Power Statement −
 Power Function −
 PPls Function −

 Print Statement !
Outputs all flags at point output
Sets the output digit number of Double type
and Real type to significant figure

 Print# Statement ! Same as Print Statement
Enables Print to each devices

 PTCLR Statement −
 PTPBoost Statement −
 PTPBoost Function −
 PTPBoostOK Function ! Returns True/False

Precaution of EPSON RC+ Ver.4.* Compatibility

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 575

Command Compatibility Note
 PTPTime Function −
 PTran Statement −
 PTRQ Statement −
 PTRQ Function −
 Pulse Statement −
 Pulse Function −
Q QP Statement −
 Quit Statement −
R RadToDeg Function −
 Randmize Statement + Seed value can be specified
 Range Statement −
 Read Statement −
 ReadBin Statement + Able to read mauliple bytes to array variable
 Real Statement ! 6 digit significant figure
 Recover Statement ×

 Redim Statement ! Element number is limited
Array called by reference cannot be executed

 Rename Statement ×
 RenDir Statement ×
 Reset Statement −
 Resume Statement −
 Restart Statement ×
 Reset Statement −
 Return Statement −
 Right$ Function −
 RmDir Statement ×
 Rnd Function −
 Robot Statement ×
 Robot Function ×
 RobotModel$ Function −
 RobotType Function −
 ROpen Statement ×
 RSet$ Function −
 RShift Function + Argument check has been added
 RTrim$ Function −
 RunDialog Statement ×
S SafetyOn Function + Able to specify Wait
 SavePoints Statement ! Extension (.pnt) has changed to (.pts)
 Seek Statement ×
 Select...Send −
 Sense −

 SetCom Statement ! Cannot specify “56000” for the transfer rate
Port with OpenCom cannot be executed

 SetNet Statement −
 SFree Statement −
 SFree Function −
 Sgn Function −

Precaution of EPSON RC+ Ver.4.* Compatibility

576 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

Command Compatibility Note
 Shutdown Statement ×
 Signal Statement −
 Sin Function −
 SLock Statement −
 Space$ Function −
 Speed Statement −
 Speed Function + Argument optional
 SpeedR Statement −
 SpeedR Function −
 SpeedS Statement −
 SpeedS Function −

 SPELCom_Event
Statement −

 SPELCom_Return
Statement ×

 Sqr Function −
 Stat Function ! Some information cannot be retrival
 Str$ Function −
 String Statement −
 Sw Function −
 Sw($) Function × Replaced to MemSw

 SyncLock Statement ! Error occurs by executing SyncLock
repeatedly

 SyncUnlock Statement −
T Tab$ Function −
 Tan Function −
 TargetOK Function ! Returns True/False
 TaskDone Function −

 TaskState Function ! 6 specified tasks do not return while Wait
statement execution

 TaskWait Statement −
 TGo Statement −
 TillOn Function −
 Time Command −
 Time Function −
 Time$ Function −
 TLClr Statement −
 TLSet Statement −
 TLSet Function −
 TMOut Statement −
 TMove Statement −
 Tmr Function −
 TmReset Statement −
 Tool Statement −
 Tool Function −

Precaution of EPSON RC+ Ver.4.* Compatibility

EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6 577

Command Compatibility Note

 Trap Statement !!

Compatibility with Trap Goto
Trap Gosub abolished and replaced to Trap
Call
Trap Call is renamed to Trap Xqt
Trap Emergency, Trap Error, Trap Abort,
Trap Pause, Trap SGOpen, Trap SGClose
have been deleted

 Trim$ Function −
 Tw Function ! Returns True/False
 Type Statement ×
U UBound Function −
 UCase$ Function −
 UOpen Statement ×
V Val Function −
 Ver Statement × Replaced to SysConfig
 Verinit Statement ×
W Wait Statement −
 WaitNet Statement −
 WaitPos Statement −
 WaitSig Statement −
 Weight Statement −
 Weight Function −
 Where Statement ! Coordinate value always diplays 6-axis
 While..Wend × Replaced to Do...Loop
 WOpen Statement ×
 Wrist Statement −
 Wrist Function −
 Write Statement −

 WriteBin Statement + Multiple bytes can be listed from the array
variable

X Xor Operator −
 Xqt Statement + Able to specify NoEmgAbort
 XY Function −
 XYLim Statement −
 XYLim Function −
Z ZeroFlg Function −

Precaution of EPSON RC+ Ver.4.* Compatibility

578 EPSON RC+ 5.0 (Ver.5.4) SPEL+ Language Reference Rev.6

List of New Commands
ArmDef Function
AccelMax Function
Align Function
AlignECP Function
AtHome Function
AutoLJM
AutoLJM Function
AvoidSingularity
AvoidSingularity Function
Base Function
Box
Box Function
BoxClr
BoxDef Function
Brake Function
Cls
DispDev
DispDev Function
EcpDef Function
ElapsedTime Function
ErrorOn Function
HomeClr
HomeDef Function
InputBox
InReal
InsideBox Function
InsidePlane Function
IOLabel$ Function

Joint
LimitTorque
LimitTorque Function
LJM Function
LocalDef Function
MHour Function
MsgBox
OLAccel
OLAccel Function
OutReal
OutReal Function
Plane
Plane Function
PlaneClr
PlaneDef Function
QPDecelR Statement
QPDecelR Function
QPDecelS Statement
QPDecelS Function
RealPls Function
RealPos Function
RealTorque
ResetElapsedTime
RobotInfo$ Function
RobotInfo Function
RobotName$ Function
RobotSerial$ Function

SetInReal
SingularityAngle
SingularityAngle Function
SingularityDist
SingularityDist Function
SingularitySpeed
SingularitySpeed Function
SysErr Function
SoftCP
SoftCP Function
TaskInfo$ Function
TaskInfo Function
TaskState
TC
TCLim
TCLim Function
TCSpeed
TCSpeed Function
TlDef Function
Toff
Ton
VxCalib statement
VxCalDelete Statement
VxCalLoad Statement
VxCalInfo Function
VxCalSave Statement
VxTrans Function
XYLimClr
XYLimDef Function

	EM153S2923F_EPSON RC+ 5.0 Ver.5.4 SPEL+ Language Reference_Rev.6
	PREFACE
	FOREWORD
	WARRANTY
	TRADEMARKS
	TRADEMARK NOTATION IN THIS MANUAL
	NOTICE
	INQUIRIES
	SERVICE CENTER
	MANUFACTURER
	SUPPLIERS
	SAFETY PRECAUTIONS

	Table of Contents
	Summary of SPEL+ Commands 1
	System Management Commands 1
	Robot Control Commands 1
	Torque Commands 5
	Input / Output Commands 5
	Point Management Commands 7
	Coordinate Change Commands 7
	Program Control Commands 8
	Program Execution Commands 8
	Pseudo Statements 9
	Numeric Value Commands 9
	String Commands 9
	Logical operators 10
	Variable commands 10
	Commands used with VB Guide 10

	SPEL+ Language Reference 11
	SPEL+ Error Messages 492
	Events 492
	Warnings 494
	Controller Main 495
	Operator Panel 501
	Teach Pendant 501
	PC 502
	Simulator 503
	Interpreter 505
	Parser 524
	Motor Control 540
	Servo 549
	Vision Calibration 555
	Points 556
	Fieldbus 558
	Vision 559
	GUI Builder 561
	Hardware 562
	EPSON RC+ 566

	Precaution of EPSON RC+ Ver.4.* Compatibility 567
	Overview 567
	General Differences 568
	Compatibility List of Commands 569
	List of New Commands 578

	Summary of SPEL+ Commands
	SPEL+ Language Reference
	!
	!...! Parallel Processing

	#
	#define
	#ifdef...#else...#endif
	#ifndef...#endif
	#include
	#undef

	A
	Abs Function
	Accel Statement
	Accel Function
	AccelMax Function
	AccelR Statement
	AccelR Function
	AccelS Statement
	AccelS Function
	Acos Function
	Agl Function
	AglToPls Function
	Align Function
	AlignECP Function
	And Operator
	Arc, Arc3 Statements
	Arch Statement
	Arch Function
	Arm Statement
	Arm Function
	ArmClr Statement
	ArmDef Function
	ArmSet Statement
	ArmSet Function
	Asc Function
	Asin Function
	Atan Function
	Atan2 Function
	ATCLR Statement
	AtHome Function
	ATRQ Statement
	ATRQ Function
	AutoLJM Statement
	AutoLJM Function
	AvoidSingularity Statement
	AvoidSingularity Function

	B
	Base Statement
	BClr Function
	BGo Statement
	BMove Statement
	Boolean Statement
	Box Statement
	Box Function
	BoxClr Statement
	BoxDef Function
	Brake Statement
	Brake Function
	BSet Function
	BTst Function
	Byte Statement

	C
	Call Statement
	ChkCom Function
	ChkNet Function
	Chr$ Function
	ClearPoints Statement
	CloseCom Statement
	CloseNet Statement
	Cls Statement
	Cont Statement
	Cos Function
	CP Statement
	CP Function
	Ctr Function
	CTReset Statement
	CtrlDev Function
	CtrlInfo Function
	CurPos Function
	Curve Statement
	CVMove Statement
	CX, CY, CZ, CU, CV, CW Statements
	CX, CY, CZ, CU, CV, CW Functions

	D
	Date Statement
	Date$ Function
	DegToRad Function
	DispDev Statement
	DispDev Function
	Dist Function
	Do...Loop Statement
	Double Statement

	E
	ECP Statement
	ECP Function
	ECPClr Statement
	ECPDef Function
	ECPSet Statement
	ECPSet Function
	ElapsedTime Function
	Elbow Statement
	Elbow Function
	Era Function
	EResume Statement
	Erf$ Function
	Erl Function
	Err Function
	ErrMsg$ Function
	ErrorOn Funcion
	Error Statement
	Ert Function
	EStopOn Function
	Exit Statement

	F
	Find Statement
	FindPos Function
	Fine Statement
	Fine Function
	Fix Function
	FmtStr$ Function
	For...Next Statement
	Function...Fend Statement

	G
	Global Statement
	Go Statement
	GoSub...Return
	GoTo Statement

	H
	Halt Statement
	Hand Statement
	Hand Function
	Here Statement
	Here Function
	Hex$ Function
	Home Statement
	HomeClr Function
	HomeDef Function
	HomeSet Statement
	HomeSet Function
	Hordr Statement
	Hordr Function
	Hour Statement
	Hour Function

	I
	If…Then…Else…EndIf Statement
	In Function
	InBCD Function
	Inertia Statement
	Inertia Function
	InPos Function
	Input Statement
	Input # Statement
	InputBox Statement
	InReal Function
	InsideBox Function
	InsidePlane Function
	InStr Function
	Int Function
	Integer Statement
	InW Function
	IOLabel$ Function
	IONumber Function

	J
	J1Flag Statement
	J1Flag Function
	J2Flag Statement
	J2Flag Function
	J4Flag Statement
	J4Flag Function
	J6Flag Statement
	J6Flag Function
	JA Function
	Joint Statement
	JRange Statement
	JRange Function
	JS Function
	JT Function
	JTran Statement
	Jump Statement
	Jump3, Jump3CP Statements

	L
	LCase$ Function
	Left$ Function
	Len Function
	LimitTorque Statement
	LimitTorque Function
	LimZ Statement
	LimZ Function
	Line Input Statement
	Line Input # Statement
	LJM Function
	LoadPoints Statement
	Local Statement
	Local Function
	LocalClr Statement
	LocalDef Function
	Lof Function
	Long Statement
	LSet$ Function
	LShift Function
	LTrim$ Function

	M
	Mask Operator
	MemIn Function
	MemInW Function
	MemOff Statement
	MemOn Statement
	MemOut Statement
	MemOutW Statement
	MemSw Function
	MHour Function
	Mid$ Function
	Mod Operator
	Motor Statement
	Motor Function
	Move Statement
	MsgBox Statement
	MyTask Function

	N
	Next Statement
	Not Operator

	O
	Off Statement
	OLAccel Statement
	OLAccel Function
	OLRate Statement
	OLRate Function
	On Statement
	OnErr Statement
	OpBCD Statement
	OpenCom Statement
	OpenNet Statement
	Oport Function
	Or Operator
	Out Statement
	Out Function
	OutReal Statement
	OutReal Function
	OutW Statement
	OutW Function

	P
	PAgl Function
	Pallet Statement
	Pallet Function
	ParseStr Statement / Function
	Pass Statement
	Pause Statement
	PauseOn Function
	PDef Function
	PDel Statement
	PLabel Statement
	PLabel$ Function
	Plane Statement
	Plane Function
	PlaneClr Statement
	PlaneDef Function
	PList Statement
	PLocal Statement
	PLocal Function
	Pls Function
	PNumber Function
	Point Assignment
	Point Expression
	PosFound Function
	Power Statement
	Power Function
	PPls Function
	Print Statement
	Print # Statement
	PTCLR Statement
	PTPBoost Statement
	PTPBoost Function
	PTPBoostOK Function
	PTPTime Function
	PTran Statement
	PTRQ Statement
	PTRQ Function
	Pulse Statement
	Pulse Function

	Q
	QP Statement
	QPDecelR Statement
	QPDecelR Function
	QPDecelS Statement
	QPDecelS Function
	Quit Statement

	R
	RadToDeg Function
	Randomize Statement
	Range Statement
	Read Statement
	ReadBin Statement
	Real Statement
	RealPls Function
	RealPos Function
	RealTorque Function
	Redim Statement
	Reset Statement
	ResetElapsedTime Statement
	Resume Statement
	Return Statement
	Right$ Function
	Rnd Function
	RobotInfo Function
	RobotInfo$ Function
	RobotModel$ Function
	RobotName$ Function
	RobotSerial$ Function
	RobotType Function
	RSet$ Function
	RShift Function
	RTrim$ Function

	S
	SafetyOn Function
	SavePoints Statement
	Select...Send Statement
	Sense Statement
	SetCom Statement
	SetIn Statement
	SetInReal Statement
	SetInW Statement
	SetNet Statement
	SetSw Statement
	SFree Statement
	SFree Function
	Sgn Function
	Signal Statement
	Sin Function
	SingularityAngle Statement
	SingularityAngle Function
	SingularityDist Statement
	SingularityDist Function
	SingularitySpeed Statement
	SingularitySpeed Function
	SLock Statement
	SoftCP Statement
	SoftCP Function
	Space$ Function
	Speed Statement
	Speed Function
	SpeedR Statement
	SpeedR Function
	SpeedS Statement
	SpeedS Function
	SPELCom_Event Statement
	Sqr Function
	Stat Function
	Str$ Function
	String Statement
	Sw Function
	SyncLock Statement
	SyncUnlock Statement
	SysConfig Command
	SysErr Function

	T
	Tab$ Function
	Tan Function
	TargetOK Function
	TaskDone Function
	TaskInfo Function
	TaskInfo$ Function
	TaskState Function
	TaskWait Statement
	TC Statement
	TCLim Statement
	TCLim Function
	TCPSpeed Function
	TCSpeed Statement
	TCSpeed Function
	TGo Statement
	Till Statement
	TillOn Function
	Time Statement
	Time Function
	Time$ Function
	TLClr Statement
	TLDef Function
	TLSet Statement
	TLSet Function
	TMOut Statement
	TMove Statement
	Tmr Function
	TmReset Statement
	Toff Statement
	Tool Statement
	Tool Function
	Ton Statement
	Trap Statement
	Trim$ Function
	TW Function

	U
	UBound Function
	UCase$ Function

	V
	Val Function
	VxCalib Statement
	VxCalDelete Statement
	VxCalLoad Statement
	VxCalInfo Function
	VxCalSave Statement
	VxTrans Function

	W
	Wait Statement
	WaitNet Statement
	WaitPos Statement
	WaitSig Statement
	Weight Statement
	Weight Function
	Where Statement
	Wrist Statement
	Wrist Function
	Write Statement
	WriteBin Statement

	X
	Xor Operator
	Xqt Statement
	XY Function
	XYLim Statement
	XYLim Function
	XYLimClr Statement
	XYLimDef Function

	SPEL+ Error Messages
	Events
	Warnings
	Controller Main
	Operator Panel
	Teach Pendant
	PC
	Simulator
	Interpreter
	Parser
	Motor Control
	Servo
	Vision Calibration
	Points
	Fieldbus
	Vision
	GUI Builder
	Hardware
	EPSON RC+

	Precaution of EPSON RC+ Ver.4.* Compatibility
	Overview
	General Differences
	Compatibility List of Commands
	List of New Commands

